A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering a Histone Reader Protein by Combining Directed Evolution, Sequencing, and Neural Network Based Ordinal Regression. | LitMetric

Directed evolution is a powerful approach for engineering proteins with enhanced affinity or specificity for a ligand of interest but typically requires many rounds of screening/library mutagenesis to obtain mutants with desired properties. Furthermore, mutant libraries generally only cover a small fraction of the available sequence space. Here, for the first time, we use ordinal regression to model protein sequence data generated through successive rounds of sorting and amplification of a protein-ligand system. We show that the ordinal regression model trained on only two sorts successfully predicts chromodomain CBX1 mutants that would have stronger binding affinity with the H3K9me3 peptide. Furthermore, we can extract the predictive features using contextual regression, a method to interpret nonlinear models, which successfully guides identification of strong binders not even present in the original library. We have demonstrated the power of this approach by experimentally confirming that we were able to achieve the same improvement in binding affinity previously achieved through a more laborious directed evolution process. This study presents an approach that reduces the number of rounds of selection required to isolate strong binders and facilitates the identification of strong binders not present in the original library.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.0c00441DOI Listing

Publication Analysis

Top Keywords

directed evolution
12
ordinal regression
12
strong binders
12
regression model
8
binding affinity
8
identification strong
8
binders original
8
original library
8
engineering histone
4
histone reader
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!