Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular dynamics (MD) simulation has become a powerful tool because it provides a time series of protein dynamics at high temporal-spatial resolution. However, the accessible timescales of MD simulation are shorter than those of the biologically rare events. Generally, long-time MD simulations over microseconds are required to detect the rare events. Therefore, it is desirable to develop rare-event-sampling methods. For a rare-event-sampling method, we have developed parallel cascade selection MD (PaCS-MD). PaCS-MD generates transition pathways from a given source structure to a target structure by repeating short-time MD simulations. The key point in PaCS-MD is how to select reasonable candidates (protein configurations) with high potentials to make transitions toward the target structure. In the present study, based on principal component analysis (PCA), we propose PCA-based PaCS-MD to detect rare events of collective motions of a given protein. Here, the PCA-based PaCS-MD is composed of the following two steps. At first, as a preliminary run, PCA is performed using an MD trajectory from the target structure to define a principal coordinate (PC) subspace for describing the collective motions of interest. PCA provides principal modes as eigenvectors to project a protein configuration onto the PC subspace. Then, as a production run, all the snapshots of short-time MD simulations are ranked by inner products (IPs), where an IP is defined between a snapshot and the target structure. Then, snapshots with higher values of the IP are selected as reasonable candidates, and short-time MD simulations are independently restarted from them. By referring to the values of the IP, the PCA-based PaCS-MD repeats the short-time MD simulations from the reasonable candidates that are highly correlated with the target structure. As a demonstration, we applied the PCA-based PaCS-MD to adenylate kinase and detected its large-amplitude (open-closed) transition with a nanosecond-order computational cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.0c00580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!