This paper reports a simple and novel conformal doping strategy for microstructured silicon diodes using enriched B for sidewall doping while enabling enhanced neutron sensitivity. Monte-Carlo nuclear particle (MCNP) code simulations were initially used to calculate the neutron detection efficiency in the microstructured diodes as a function of geometry and pitch. A high-temperature anneal in B-filled diodes results in a conformal silicon p layer along the side walls of the trenches in the diodes. This results in large neutron detection areas and enhanced neutron detection efficiency when compared with planar detectors. With the method discussed here, a thermal neutron detection of ∼21% efficiency is achieved, which is significantly higher than the efficiency achieved in planar detectors (∼3.5%). The higher efficiency is enabled by the B acting as a source for conformal doping in the trenches, resulting in lower leakage current while also enabling neutron sensitivity in the microstructured diodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.0c01013DOI Listing

Publication Analysis

Top Keywords

neutron detection
16
conformal doping
12
thermal neutron
8
enhanced neutron
8
neutron sensitivity
8
detection efficiency
8
microstructured diodes
8
planar detectors
8
efficiency achieved
8
higher efficiency
8

Similar Publications

This paper explores the adaptation and application of i-TED Compton imagers for real-time dosimetry in Boron Neutron Capture Therapy (BNCT). The i-TED array, previously utilized in nuclear astrophysics experiments at CERN, is being optimized for detecting and imaging 478 keV gamma-rays, critical for accurate BNCT dosimetry. Detailed Monte Carlo simulations were used to optimize the i-TED detector configuration and enhance its performance in the challenging radiation environment typical of BNCT.

View Article and Find Full Text PDF

Reactor-emitted electron antineutrinos can be detected via the inverse beta decay reaction, which produces a characteristic signal: a two-fold coincidence between a prompt positron event and a delayed neutron capture event within a specific time frame. While liquid scintillators are widely used for detecting neutrinos reacting with matter, detection is difficult because of the low interaction of neutrinos. In particular, it is important to distinguish between neutron (n) and gamma (γ) signals.

View Article and Find Full Text PDF

Detecting shielded special nuclear material, such as nuclear explosives, is a difficult challenge pursued by non-proliferation, anti-terrorism, and nuclear security programs worldwide. Interrogation with intense fast-neutron pulses is a promising method to characterize concealed nuclear material rapidly but is limited by suitable source availability and proven instrumentation. In this study we have pioneered a demonstration of such an interrogation method using a high-intensity, short-pulse, laser-driven neutron source that offers potential benefits compared to conventional neutron sources.

View Article and Find Full Text PDF

X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.

View Article and Find Full Text PDF
Article Synopsis
  • Fast radio bursts (FRBs) are intense signals from deep space that last for milliseconds and share some characteristics with pulsars, suggesting they may originate from neutron stars.
  • Despite similarities, FRBs like 20221022A display different patterns in their linear polarization position angle (PA), particularly a 130° rotation that aligns with pulsar behaviors, hinting at magnetospheric origins.
  • This study rules out short-period pulsars as potential sources for FRB 20221022A, supporting the idea that its unique PA evolution fits the rotating vector model commonly used for pulsars.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!