Prolines in signaling proteins are of particular interest because they have a range of unique properties that may be critical for function. Here we show that many proline residues in the extracellular domain (ECD) of the glycine receptor are involved in the correct functioning of this ligand-gated ion channel. We explore their role by creating mutant receptors, expressing them in cells, and using fluorescent membrane potential sensitive dye to monitor receptor activity. We then interpret the changes in receptor parameters using structural information from the open and closed states of the receptor. The data reveal that substitution with alanine of ten of the 13 Pro residues in the ECD alters the function of the receptor: one substitution ablates function, six cause a decrease in the EC, and three cause an increase. Only three of these mutants result in EC values similar to WT. The nonfunctional mutant, Pro30Ala, was further probed in oocytes, and the data suggest a role in both expression and function. Examination of the locations of sensitive Pro residues in the receptor and identification of potential interactions with nearby residues reveal how these residues could contribute to the correct functioning of this typical pentameric ligand-gated ion channel.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.0c00320DOI Listing

Publication Analysis

Top Keywords

proline residues
8
residues extracellular
8
extracellular domain
8
glycine receptor
8
correct functioning
8
ligand-gated ion
8
ion channel
8
pro residues
8
receptor
7
function
5

Similar Publications

Conusvenoms are composed of peptides that are commonly post-translationally modified, increasing their chemical diversity beyond what is encoded in the genome and enhancing their potency and selectivity. This study describes how PTMs alter an α-conotoxin's selectivity for specific nAChR subtypes. Venom from the cone snailConus(Asprella)neocostatuswas fractionated using high-performance liquid chromatography and tested using a behavioral intracranial mouse bioassay and a cholinergic calcium imaging assay using SH-SY5Y neuroblastoma cells.

View Article and Find Full Text PDF

Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain.

View Article and Find Full Text PDF

Members of the old yellow enzyme (OYE) family utilize a flavin mononucleotide cofactor to catalyze the asymmetric reduction of activated alkenes. The 2-enoate reductase (2-ER) subfamily are of particular industrial relevance as they can reduce α/β alkenes near electron-withdrawing groups. While the broader OYE family is being extensively explored for biocatalytic applications, oxygen sensitivity and poor expression yields associated with the presence of an Fe/S cluster in 2-ERs have hampered their characterization.

View Article and Find Full Text PDF

Hydroxylation, an extensive post-translational modification on proline, is critical for the modulation of protein structures, further dominating their functions in life systems. However, current mass spectrometry-based identification, could hardly distinguish hydroxylation from neighboring oxidation due to the same mass shifts, as well as challenges posed by low abundance and exogenous oxidation during sample preparation. To address these, an engineered nanopore was designed, capable of discriminating single hydroxyl group, to achieve the identification of proline hydroxylation on individual native peptides directly in the mixture.

View Article and Find Full Text PDF

Background: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe respiratory illness in humans and currently lacks an approved vaccine. The Newcastle disease virus (NDV) vector is a well-established, safe, and effective platform for vaccine development. With recent advancements in stabilizing coronavirus spike proteins to enhance their antigenicity, this study aimed to determine whether modifications to the MERS-CoV spike protein could improve its presentation on NDV particles, allowing the resulting virus to be used as an inactivated vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!