A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comprehensive Prediction of Molecular Recognition in a Combinatorial Chemical Space Using Machine Learning. | LitMetric

In combinatorial chemical approaches, optimizing the composition and arrangement of building blocks toward a particular function has been done using a number of methods, including high throughput molecular screening, molecular evolution, and computational prescreening. Here, a different approach is considered that uses sparse measurements of library molecules as the input to a machine learning algorithm which generates a comprehensive, quantitative relationship between covalent molecular structure and function that can then be used to predict the function of any molecule in the possible combinatorial space. To test the feasibility of the approach, a defined combinatorial chemical space consisting of ∼10 possible linear combinations of 16 different amino acids was used. The binding of a very sparse, but nearly random, sampling of this amino acid sequence space to 9 different protein targets is measured and used to generate a general relationship between peptide sequence and binding for each target. Surprisingly, measuring as little as a few hundred to a few thousand of the ∼10 possible molecules provides sufficient training to be highly predictive of the binding of the remaining molecules in the combinatorial space. Furthermore, measuring only amino acid sequences that bind weakly to a target allows the accurate prediction of which sequences will bind 10-100 times more strongly. Thus, the molecular recognition information contained in a tiny fraction of molecules in this combinatorial space is sufficient to characterize any set of molecules randomly selected from the entire space, a fact that potentially has significant implications for the design of new chemical function using combinatorial chemical libraries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acscombsci.0c00003DOI Listing

Publication Analysis

Top Keywords

combinatorial chemical
16
combinatorial space
12
molecular recognition
8
chemical space
8
machine learning
8
amino acid
8
molecules combinatorial
8
combinatorial
7
space
7
molecular
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!