A major challenge for chemotherapy of bacterial infections is perturbation of the intestinal microbiota. is a Gram-positive bacterium of the gut that can thrive under this circumstance. Its production of dormant and antibiotic-impervious spores results in chronic disruption of normal gut flora and debilitating diarrhea and intestinal infection. is responsible for 12,800 deaths per year in the United States. Here, we report the discovery of 2-(4-(3-(trifluoromethoxy)phenoxy)picolinamido)benzo[]oxazole-5-carboxylate as an antibacterial with potent and selective activity against . Its MIC and MIC (the concentration required to inhibit the growth of 50% and 90% of all the tested strains, respectively) values, documented across 101 strains of , are 0.12 and 0.25 μg/mL, respectively. The compound targets cell wall biosynthesis, as assessed by macromolecular biosynthesis assays and by scanning electron microscopy. Animals infected with a lethal dose of and treated with compound had a similar survival compared to treatment with vancomycin, which is the frontline antibiotic used for infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716698PMC
http://dx.doi.org/10.1021/acsinfecdis.0c00479DOI Listing

Publication Analysis

Top Keywords

discovery potent
4
potent picolinamide
4
picolinamide antibacterial
4
antibacterial active
4
active major
4
major challenge
4
challenge chemotherapy
4
chemotherapy bacterial
4
bacterial infections
4
infections perturbation
4

Similar Publications

Human African trypanosomiasis (HAT) is one of the most lethal of the neglected tropical diseases. While the discovery of a novel antitrypanosomal drug is highly desired, the creation of a superior lead compound is challenging. Herein we report ukabamide (), which was isolated from a marine sp.

View Article and Find Full Text PDF

Design and Discovery of Preclinical Candidate LYG-409 as a Highly Potent and Selective GSPT1 Molecular Glue Degraders.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China.

Molecular glue degraders induce "undruggable" protein degradation by a proximity-induced effect. Inspired by the clinical success of immunomodulatory drugs, we aimed to design novel molecular glue degraders targeting GSPT1. Here, we report the design of a series of GSPT1 molecular glue degraders.

View Article and Find Full Text PDF

Echinoderms, a diverse group of marine invertebrates including starfish, sea urchins, and sea cucumbers, have been recognized as prolific sources of structurally diverse natural products. In the past five years, remarkable progress has been made in the isolation, structural elucidation, and pharmacological assessment of these bioactive compounds. These metabolites, including polysaccharides, triterpenoids, steroids, and peptides, demonstrate potent bioactivities such as anticancer, anti-inflammatory, antiviral, and antimicrobial effects, providing valuable insights and scaffolds for drug discovery.

View Article and Find Full Text PDF

One of the most important steps in preclinical drug discovery is to demonstrate the in vivo efficacy of potential leishmanicidal compounds and good characteristics at the level of parasite killing prior to initiating human clinical trials. This paper describes the use of dehydrothyrsiferol (DT), isolated from the red alga , in a pharmaceutical form supported on Sepigel, and the in vivo efficacy against a mouse model of cutaneous leishmaniasis. Studying the ultrastructural effect of DT was also carried out to verify the suspected damage at the cellular level and determine the severity of damages produced in the homeostasis of promastigotes.

View Article and Find Full Text PDF

Cancer remains a significant medical challenge, necessitating the discovery of novel therapeutic agents. Ribosomally synthesized and post-translationally modified peptides (RiPPs) from plants have emerged as a promising source of anticancer compounds, offering unique structural diversity and potent biological activity. This review identifies and discusses cytotoxic RiPPs across various plant families, focusing on their absolute chemical structures and reported cytotoxic activities against cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!