The present study aimed to analyze long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in septic mice heart and to identify potential lncRNAs and mRNAs that be responsible for cardiac mitochondrial dysfunction during sepsis. Mice were treated with 10 mg/kg of lipopolysaccharides to induce sepsis. LncRNAs and mRNAs expression were evaluated by using lncRNA and mRNA microarray or real-time polymerase chain reaction technique. LncRNA-mRNA coexpression network assay, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. The results showed that 1275 lncRNAs were differentially expressed in septic myocardium compared with those in the control group. A total of 2769 mRNAs were dysregulated in septic mice heart, most of which are mainly related to the process of inflammation, mitochondrial metabolism, oxidative stress, and apoptosis. Coexpression network analysis showed that 14 lncRNAs were highly correlated with 11 mitochondria-related differentially expressed mRNA. Among all lncRNAs and their cis-acting mRNAs, 41 lncRNAs-mRNA pairs (such as NONMMUG004378 and Apaf1 gene) were enriched in GO terms and KEGG pathways. In summary, we gained some specific lncRNAs and their potential target mRNAs that might be involved in mitochondrial dysfunction in septic myocardium. These findings provide a panoramic view of lncRNA and might allow developing new treatment strategies for sepsis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.29831DOI Listing

Publication Analysis

Top Keywords

septic mice
12
mice heart
8
lncrnas mrnas
8
mitochondrial dysfunction
8
coexpression network
8
differentially expressed
8
septic myocardium
8
lncrnas
7
septic
5
mrnas
5

Similar Publications

Background: Sepsis is characterized by an excessive immune response. Modulation of the immune response, particularly macrophage polarization, may provide therapeutic benefit. The effects of Caerulomycin A (caeA), a known STAT1 phosphorylation inhibitor, on macrophage polarization and inflammatory markers were explored using a lipopolysaccharide (LPS)-induced sepsis mouse model.

View Article and Find Full Text PDF

Soluble CD72 concurrently impairs T cell functions while enhances inflammatory response in sepsis.

Int Immunopharmacol

January 2025

Department of Critical Care Medicine, West China Hospital, Sichuan University, China. Electronic address:

Background: Sepsis is defined as multi-organ dysfunction caused by dysregulated host response to infection. This dysregulated host response includes enhanced inflammatory responses and suppressed adaptive immunity, but the molecular mechanisms behind it have not yet been elucidated. CD72, a type II transmembrane protein that is primarily expressed in B cells, was found to play an immunomodulatory role in the immune system and was associated with mortality in patients with sepsis.

View Article and Find Full Text PDF

To illustrate the potential of mesenchymal stem cell-derived exosomes (MSC-Exos) in mitigating septic lung injury by reducing the excessive formation of neutrophil extracellular traps (NETs), a mouse model of septic lung injury was induced through cecal ligation and puncture (CLP). The mice received intraperitoneal injections of MSC-Exos. Post injection, pathological alterations of the lung tissue were evaluated through HE staining, and the levels of inflammatory markers in each mouse group at various time points were assessed using ELISA kits.

View Article and Find Full Text PDF

Neutrophils are peripheral blood-circulating leukocytes that play a pivotal role in host defense against bacterial pathogens which upon activation, they release web-like chromatin structures called neutrophil extracellular traps (NETs). Here, we analyzed and compared the importance of myeloid differentiation factor 88 (MYD88), peptidyl arginine deiminase 4 (PAD4), and gasdermin D (GSDMD) for NET formation in vivo following sepsis and neutrophilia challenge. Injection of lipopolysaccharide (LPS)/E.

View Article and Find Full Text PDF

Suppression of Sepsis Cytokine Storm by Escherichia Coli Cell Wall-Derived Carbon Dots.

Adv Mater

January 2025

State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.

Article Synopsis
  • Sepsis is a severe condition caused by an uncontrolled immune reaction to infections, often involving harmful bacteria like E. coli, and currently lacks effective treatments.
  • Researchers developed E. coli wall-derived carbon dots (E-CDs) that can reduce inflammation and improve survival rates in septic mice by binding to immune receptors and preventing excessive immune responses.
  • E-CDs also show promise in other models, reducing inflammation and oxidative stress, suggesting they could be a new therapeutic approach for treating sepsis by utilizing pathogen-derived materials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!