Background: The Trichophyton rubrum species group consists of prevalent causative agents of human skin, nail and hair infections, including T rubrum sensu stricto and T violaceum, as well as other less well-established or debatable taxa like T soudanense, T kuryangei and T megninii. Our previous study provided limited evidence in favour of the existence of two genetic lineages in the Russian T rubrum sensu stricto population.

Objectives: We aimed to study the genetic structure of the Russian population of T rubrum and to identify factors shaping this structure.

Methods: We analysed the polymorphism of 12 simple sequence repeat (SSR or microsatellite) markers and single nucleotide polymorphism in the TERG_02941 protein-coding gene in 70 T rubrum isolates and performed a phylogenomic reconstruction.

Results: All three types of data provided conclusive evidence that the population consists of two genetic lineages. Clustering, performed by means of microsatellite length polymorphism analysis, was strongly dependent on the number of nucleotide repeats in the 5'-area of the fructose-1,6-bisphosphate aldolase gene. Analysis of molecular variance (AMOVA) on the basis of SSR typing data indicated that 22%-48% of the variability was among groups within T rubrum. There was no clear connection of population structure with types of infection, places of geographic origin, aldolase gene expression or urease activity.

Conclusion: Our results suggest that the Russian population of T rubrum consists of two cosmopolitan genetic lineages.

Download full-text PDF

Source
http://dx.doi.org/10.1111/myc.13162DOI Listing

Publication Analysis

Top Keywords

genetic lineages
12
trichophyton rubrum
8
simple sequence
8
sequence repeat
8
single nucleotide
8
nucleotide polymorphism
8
t rubrum sensu
8
sensu stricto
8
russian population
8
population t rubrum
8

Similar Publications

Hornworts, one of the three bryophyte phyla, show some of the deepest divergences in extant land plants, with some families separated by more than 300 million years. Previous hornwort genomes represented only one genus, limiting the ability to infer evolution within hornworts and their early land plant ancestors. Here we report ten new chromosome-scale genomes representing all hornwort families and most of the genera.

View Article and Find Full Text PDF

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

Transformations to Simplify Phylogenetic Networks.

Bull Math Biol

January 2025

Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.

The evolutionary relationships between species are typically represented in the biological literature by rooted phylogenetic trees. However, a tree fails to capture ancestral reticulate processes, such as the formation of hybrid species or lateral gene transfer events between lineages, and so the history of life is more accurately described by a rooted phylogenetic network. Nevertheless, phylogenetic networks may be complex and difficult to interpret, so biologists sometimes prefer a tree that summarises the central tree-like trend of evolution.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) are consistently discovering genetic variants linked to the risk of developing this neurodegenerative condition. However, the effect size of the shared associated loci varies across populations as well as each population can have unique associations. This phenomenon could be explained by ancestry-dependent changes in the genomic regulatory architecture (GRA) influencing the expression of these genes, similar to the effect of different local ancestry on the risk of AD in APOE4 carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!