Chaos-based image encryption schemes shuffle the position of the pixels (confuse), change their values (diffuse), to camouflage the identity of the original image. In this paper, a symmetric image cryptosystem based on permutation is proposed. Permutation, used both to change the position of the pixel and modify its value, is undertaken using the Bogdanov map. First, the input image is permuted using the Bogdanov map so that the pixel positions are changed. Thereafter, the resultant scrambled image is sliced into bit-planes which are again separately subjected to the Bogdanov map. The encrypted image is constructed by encrypting the scrambled bit-planes with the key generated using dyadic transform. The experimental results exhibited random behavior in the distribution of the pixel values of the encrypted image. The cryptosystem is simple and fast, as it is permutation-based and, secure, it may be used in real-time transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202020181207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!