Synthesis and characterization of a layered aluminosilicate NUD-11 and its transformation to a 3D stable zeolite.

Dalton Trans

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Published: August 2020

Aluminosilicate zeolites are a well-known class of crystalline materials that have wide applications in various industrial fields due to their selective adsorption, acidic sites, and stable hydrothermal stability. Great efforts have been devoted to discovering new zeolite structures. As one of the effective methods, layered silicates have been used as precursors to produce stable zeolites through topotactic transformation. Herein, a new layered aluminosilicate, named NUD-11, was hydrothermally synthesized using N,N-dimethylbenzimidazolium as the structure directing agent (SDA). It was then converted into a stable crystalline zeolite by linking the interlayer Si-OH groups with a silylation agent, diethoxymethylsilane. Studies showed that the resulting NUD-11S consisted of alkylsilicate -O-Si(CH3)2-O- linkages between the adjacent layers to form interconnecting 10- and 12-membered ring channels. The calcined NUD-11S possessed micropores of 0.74 nm and 1.2 nm in diameter with a large specific surface area of 314 m2 g-1. The abundant microporosity would make NUD-11S useful as adsorbents or catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt02449jDOI Listing

Publication Analysis

Top Keywords

layered aluminosilicate
8
synthesis characterization
4
characterization layered
4
aluminosilicate nud-11
4
nud-11 transformation
4
stable
4
transformation stable
4
stable zeolite
4
zeolite aluminosilicate
4
aluminosilicate zeolites
4

Similar Publications

A coarse-grained model of clay colloidal aggregation and consolidation with explicit representation of the electrical double layer.

J Colloid Interface Sci

December 2024

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address:

Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles.

View Article and Find Full Text PDF

The growing demand for products made of polymeric materials, including the commonly used polypropylene (PP), is accompanied by the problem of storing and disposing of non-biodegradable waste, increasing greenhouse gas emissions, climate change and the creation of toxic products that constitute a health hazard of all living organisms. Moreover, most of the synthetic polymers used are made from petrochemical feedstocks from non-renewable resources. The use of petrochemical raw materials also causes degradation of the natural environment.

View Article and Find Full Text PDF

End-to-End Pierced Carbon Nanosheets with Meso-Holes.

Adv Sci (Weinh)

November 2024

Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Queensland, 4072, Australia.

The remarkable properties of 2D nanomaterials are well known. However, their high interfacial adhesion energy often leads to restacking issues, limiting their potential in various applications. A strategic synthetic approach is presented to overcome this challenge.

View Article and Find Full Text PDF

The scarcity of conventional aggregates with tremendous growth in highway construction and the indiscriminate dumping of industrial waste materials in precious landfills has become a huge global concern. This study is aimed at utilizing wastes from various industries, including coalmine overburden (OB) dump, basic oxygen furnace (BOF) slag, and fly ash to produce suitable and sustainable cement-treated subbase/base course layers (CBSB/CTB) for flexible pavement construction. Response surface methodology was used to optimize the composition of the blended material considering unconfined compressive strength (UCS) and Poisson's ratio.

View Article and Find Full Text PDF

N, F Co-Doped Carbon Derived from Spent Bleaching Earth Waste as Oxygen Electrocatalyst Support.

Chempluschem

December 2024

Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain.

Affordable nitrogen and fluorine co-doped carbon nanostructure was prepared from the hazardous industrial waste of edible oil refinery, spent bleaching earth (SBE), and used as raw material for obtaining high-performance non-noble metal bifunctional oxygen electrocatalysts. Waste SBE contains 35 % residue non-saturated oil as a carbon source and the assistance of montmorillonite (MMT) as the template. This study converts waste SBE into a fluorine-doped carbon nanostructure through a pyrolysis process followed by removing the aluminosilicate layers of the MMT by HF etching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!