Synthesis, dynamics and redox properties of eight-coordinate zirconium catecholate complexes.

Dalton Trans

Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA.

Published: August 2020

Reaction of the 9,9-dimethylxanthene-bis(imine)-bis(catechol) ligand XbicH4 with half an equivalent of Zr(acac)4 affords the neutral tetracatecholate complex (XbicH2)2Zr, containing four iminium ions hydrogen bonded to the catecholates. The heteroleptic bis(catecholate)-tetraphenylporphyrin complex (TPP)Zr(XbicH2) is formed from reaction of (TPP)Zr(OAc)2 with XbicH4 in the presence of base. Both compounds adopt an eight-coordinate square antiprismatic geometry around the zirconium center. NMR spectra of (TPP)Zr(XbicH2) show that it is fluxional at room temperature, with homoleptic (XbicH2)2Zr showing fluxionality at higher temperatures. Calculations and kinetic isotope effect measurements suggest that the motions involve dissociation of a single catecholate oxygen and subsequent twisting of the seven-coordinate species. The compounds show reversible one-electron oxidations of each of the bound catecholates to bound semiquinones.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt02487bDOI Listing

Publication Analysis

Top Keywords

synthesis dynamics
4
dynamics redox
4
redox properties
4
properties eight-coordinate
4
eight-coordinate zirconium
4
zirconium catecholate
4
catecholate complexes
4
complexes reaction
4
reaction 99-dimethylxanthene-bisimine-biscatechol
4
99-dimethylxanthene-bisimine-biscatechol ligand
4

Similar Publications

Liquid Active Surface Growth: Explaining the Symmetry Breaking in Liquid Nanoparticles.

ACS Nano

January 2025

Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.

In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.

View Article and Find Full Text PDF

Tubulin detyrosination shapes cytoskeletal architecture and virulence.

Proc Natl Acad Sci U S A

January 2025

Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier 34095, France.

Tubulin detyrosination has been implicated in various human disorders and is important for regulating microtubule dynamics. While in most organisms this modification is restricted to α-tubulin, in trypanosomatid parasites, it occurs on both α- and β-tubulin. Here, we show that in , a single vasohibin (LmVASH) enzyme is responsible for differential kinetics of α- and β-tubulin detyrosination.

View Article and Find Full Text PDF

Background: Fracture disrupts the integrity and continuity of the bone, leading to symptoms such as pain, tenderness, swelling, and bruising. Rhizoma Musae is a medicinal material frequently utilized in the Miao ethnic region of Guizhou Province, China. However, its specific mechanism of action in treating fractures remains unknown.

View Article and Find Full Text PDF

Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!