Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Estimating incidence from cross-sectional data sources is both important to the understanding of the HIV epidemic and challenging from a methodological standpoint. We develop a new incidence estimator that measures the size of the undiagnosed population and the amount of time spent undiagnosed in order to infer incidence and transmission rates. The estimator is calculated using commonly collected information on testing history and HIV status and, thus, can be deployed in many HIV surveys without additional cost. If ART biomarker status and/or viral load information is available, the estimator can be adjusted for biases in self-reported testing history. The performance of the estimator is explored in two large surveys in Kenya, where we find our point estimates to be consistent with assay-derived estimates, with much smaller standard errors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423136 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237221 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!