Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are the two crucial enzymes involved in the pathology of Alzheimer's disease. The former is responsible for many defects in cholinergic signaling pathway and the latter is the primary enzyme in the biosynthesis of beta-amyloid as the main component of the amyloid plaques. These both abnormalities are found in the brains of Alzheimer's patients. In this study, in silico models were developed, including 3D-pharmacophore, 2D-QSAR (two-dimensional quantitative structure-activity relationship), and molecular docking, to screen virtually a database of compounds for AChE and BACE-1 inhibitory activities. A combinatorial library containing more than 3 million structures of curcumin and flavonoid derivatives was generated and screened for drug-likeness and enzymatic inhibitory bioactivities against AChE and BACE-1 through the validated in silico models. A total of 47 substances (two curcumins and 45 flavonoids), with remarkable predicted pIC values against AChE and BACE-1 ranging from 4.24-5.11 (AChE) and 4.52-10.27 (BACE-1), were designed. The in vitro assays on AChE and BACE-1 were performed and confirmed the in silico results. The study indicated that, by using in silico methods, a series of curcumin and flavonoid structures were generated with promising predicted bioactivities. This would be a helpful foundation for the experimental investigations in the future. Designed compounds which were the most feasible for chemical synthesis could be potential candidates for further research and lead optimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464027 | PMC |
http://dx.doi.org/10.3390/molecules25163644 | DOI Listing |
Brain Sci
November 2024
Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Background/objectives: Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer's disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 () inhibitor, may offer neuroprotective benefits in type 2 diabetes mellitus (T2DM).
Methods: T2DM was induced in rats using nicotinamide (NICO) and streptozotocin (STZ), and biomarkers of AD and DM-linked enzymes, inflammation, oxidative stress, and apoptosis were evaluated in the brain.
Curr Alzheimer Res
January 2025
Silicon Script Sciences Private Limited, Bharatpur, Gorahi, Dang, 22400, Nepal.
Background: Alzheimer's disease (AD) is marked by cognitive decline, amyloid plaques, neurofibrillary tangles, and cholinergic loss. Due to the limited success of amyloid-targeted therapies, attention has shifted to new non-amyloid targets like phosphodiesterases (PDE). This study investigates the potential of phytomolecules and derivatives, particularly 8-Prenyldaidzein, in AD treatment.
View Article and Find Full Text PDFMolecules
November 2024
Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Alzheimer's disease (AD) is a neurodegenerative disorder associated with the dysregulation of several key enzymes, including acetylcholinesterase (AChE), cyclooxygenase-2 (COX-2), glycogen synthase kinase 3β (GSK-3β), β-site amyloid precursor protein cleaving enzyme 1 (BACE-1), and caspase-3. In this study, machine learning algorithms such as Random Forest (RF), Gradient Boost (GB), and Extreme Gradient Boost (XGB) were employed to screen US-FDA approved drugs from the ZINC15 database to identify potential dual inhibitors of COX-2 and AChE. The models were trained using molecules obtained from the ChEMBL database, with 5039 molecules for AChE and 3689 molecules for COX-2.
View Article and Find Full Text PDFPhytother Res
January 2025
Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy.
Cannabidiolic (CBDA) and cannabigerolic (CBGA) acids are naturally occurring compounds from Cannabis sativa plant, previously identified by us as dual PPARα/γ agonists. Since the development of multitarget-directed ligands (MTDL) represents a valuable strategy to alleviate and slow down the progression of multifactorial diseases, we evaluated the potential ability of CBDA and CBGA to also inhibit enzymes involved in the modulation of the cholinergic tone and/or β-amyloid production. A multidisciplinary approach based on computational and biochemical studies was pursued on selected enzymes, followed by behavioral and electrophysiological experiments in an AD mouse model.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China.
Petunidin-3-O-(-coumaroylrutinoside)-5-O-glucoside (PtCG), the primary anthocyanin ingredient in Murr., possesses a range of biological activities, including antioxidative properties and melanin inhibition. This study aimed to investigate the protective effect of PtCG on D-galactose (D-gal)-induced aging in female mice and elucidate the underlying molecular pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!