The Quality of Ciders Depends on the Must Supplementation with Mineral Salts.

Molecules

Department of Fermentation Technology and Microbiology, University of Agriculture in Krakow, Faculty of Food Technology, ul. Balicka 122, 30-149 Krakow, Poland.

Published: August 2020

Providing yeast with the right amount of mineral salts before fermentation can contribute to improving the entire technological process, resulting in a better-quality final product. The aim of this study was to assess the impact of apple must supplementation with mineral salts ((NH)SO, MgSO, (NH)PO)) on enological parameters, antioxidant activity, total polyphenol content, and the profile of volatile cider compounds fermented with various yeast strains. Rubin cultivar must was inoculated with wine, cider, and distillery or wild yeast strains. Various mineral salts and their mixtures were introduced into the must in doses from 0.167 g/L to 0.5 g/L. The control sample consisted of ciders with no added mineral salts. The basic enological parameters, antioxidant properties, total polyphenol content, and their profile, as well as the composition of volatile compounds, were assessed in ciders. Must supplementation with magnesium salts significantly influenced the use of the analyzed element by yeast cells and was dependent on the yeast strain. In supplemented samples, a decrease in alcohol concentration and total acidity, as well as an increase in the content of extract and total polyphenols, was observed compared to the controls. The addition of ammonium salts caused a decrease in the amount of higher alcohols and magnesium salts, as well as a decrease in the concentration of some esters in ciders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463989PMC
http://dx.doi.org/10.3390/molecules25163640DOI Listing

Publication Analysis

Top Keywords

mineral salts
20
supplementation mineral
8
salts
8
enological parameters
8
parameters antioxidant
8
total polyphenol
8
polyphenol content
8
content profile
8
yeast strains
8
magnesium salts
8

Similar Publications

Groundnut fodder was utilized as a bioresource for the production of cellulases through solid state fermentation (SSF). Aspergillus unguis was initially grown on modified groundnut fodder for cellulase production and the fodder was hydrolyzed by the crude cellulase extract into fermentable hydrolyzate. The highest titer of Filter paperase (FPase), Carboxymethyl cellulase (CMCase), β-glucosidase, and protein content were found to be 11.

View Article and Find Full Text PDF

Boosting Nutritional Proficiency of Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Agaricomycetes): A Selenium and Zinc Fortification Exploration.

Int J Med Mushrooms

January 2025

Department of Plant Pathology, College of Agriculture, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur-176062, India.

The present study was aimed at evaluating the nutritional characteristics of bio-enriched oyster mushrooms. Cereal, leguminous and oilseed waste was used as substrates. Rice, soybean and mustard straw performed the best among all substrate fortified by adding Se and Zn salts individually and in combination at three different doses (25, 50 and 75 mg/kg) for nutrient analysis.

View Article and Find Full Text PDF

Foliar application of nitrates limits lead uptake by Cucumis sativus L. plants.

J Trace Elem Med Biol

January 2025

Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland.

Lead is a toxic heavy metal, which accumulates in the soil and is readily absorbed by plant roots. The uptake of toxic elements by crops is a serious threat to human health. For this reason, it is important to prevent the incorporation of heavy metals into the food chain.

View Article and Find Full Text PDF

Study on Microscopic Properties of Molten NaF-AlF-CaF/LiF/KF Using First-Principles Molecular Dynamics.

J Phys Chem B

January 2025

Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.

This study employs first-principles molecular dynamics (FPMD) simulations combined with the Voronoi tessellation method to explore the microstructure, transport properties, electronic properties, and Raman spectra of the NaF-AlF-CaF/LiF/KF systems with varying cryolite ratios, additive types, and concentrations. The results indicate that Na, Ca, Li, and K exist in a free state in the molten salts, while Al forms complex ion groups in the form of [AlF] with F, and free F also exists in the molten salts. In the NaF-AlF-CaF system, the average Al-F distance is slightly shorter than that in the other two systems, while the Al-F coordination number is higher in NaF-AlF-LiF.

View Article and Find Full Text PDF

A selective non-enzymatic synthesis of ribose simply from formaldehyde, metal salts and clays.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.

Article Synopsis
  • The study shows that metal-doped clay (MDC) can selectively produce ribose from formaldehyde without biological processes.
  • Ribose remains stable better than other carbohydrates when combined with natural minerals and divalent cations, suggesting its significance on early Earth.
  • This research provides insights into why ribose is considered the foundational component of RNA in living organisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!