Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor.

Int J Mol Sci

Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-10117 Berlin, Germany.

Published: August 2020

The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460885PMC
http://dx.doi.org/10.3390/ijms21165728DOI Listing

Publication Analysis

Top Keywords

complexity plasticity
8
signaling regulation
8
melanocortin-4 receptor
8
inactive state
8
mc4r
7
signaling
5
structural complexity
4
plasticity signaling
4
regulation melanocortin-4
4
receptor melanocortin-4
4

Similar Publications

Embracing diversity: macrophage complexity in cancer.

Trends Cancer

January 2025

Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain. Electronic address:

Macrophages are myeloid cells that receive, integrate, and respond to tumoral cues. Tumors evolve and are shaped by macrophages, with tumor-associated macrophage (TAM)-tumor sculpting capacities going beyond an increase in their cellular mass. Longitudinal and local heterogeneity of TAM states is now possible with the use of single-cell and spatial transcriptomics.

View Article and Find Full Text PDF

Synaptoneurolipidomics: lipidomics in the study of synaptic function.

Trends Biochem Sci

January 2025

Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. Electronic address:

The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes.

View Article and Find Full Text PDF

A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis.

View Article and Find Full Text PDF

NIST Mass Spectral Libraries in the Context of the Circular Economy of Plastics.

J Am Soc Mass Spectrom

January 2025

Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, 20899, United States.

The Mass Spectrometry Data Center (MSDC) has recently started improving existing libraries and creating new ones for identifying and analyzing plastics-related compounds (PRC) and materials (PRM) as part of the NIST circular economy program. PRC are small molecules of dissimilar chemical nature; hence, to increase coverage, we have used three types of ionizations: EI, ESI, and APCI. PRM are solids that include polymers, polymer mixtures, and commercial plastics, so we have used pyrolysis-gas chromatography (py-GC-MS) to create a new searchable library.

View Article and Find Full Text PDF

Articular malalignment and ulnocarpal impaction can progress to osteoarthritis in the wrist. This may be triggered by tears of the scapholunate ligament (rarely the lunotriquetral ligament) or the foveal lamina of the triangular fibrocartilage complex. In the pre-degenerative stages, radiographic findings are inconclusive, and symptoms may be absent or discrete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!