Sarcopenia is defined as muscle mass and strength loss with aging. As places, such as South Korea, Japan, and Europe have entered an aged society, sarcopenia is attracting global attention with elderly health. However, only few developed devices can quantify sarcopenia diagnosis modalities. Thus, the authors developed a sarcopenia detection system with 4 degrees of freedom to scan the human thigh with ultrasound probe and determine whether he/she has sarcopenia by inspecting the length of muscle thickness in the thigh by ultrasound image. To accurately measure the muscle thickness, the ultrasound probe attached to the sarcopenia detection system, must be moved angularly along the convex surface of the thigh with predefined pressure maintained. Therefore, the authors proposed an angular thigh scanning method for the aforementioned reason. The method first curve-fits the angular surface of the subject's thigh with piecewise arcs using D information from a fixed RGB-D camera. Then, it incorporates a Jacobian-based ultrasound probe moving method to move the ultrasound probe along the curve-fitted arc and maintains radial interface force between the probe and the surface by force feedback control. The proposed method was validated by in-vitro test with a human thigh mimicked ham-gelatin phantom. The result showed the ham tissue thickness was maintained within approximately 26.01 ± 1.0 mm during 82° scanning with a 2.5 N radial force setting and the radial force between probe and surface of the phantom was maintained within 2.50 ± 0.1 N.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472485PMC
http://dx.doi.org/10.3390/s20164447DOI Listing

Publication Analysis

Top Keywords

ultrasound probe
20
sarcopenia detection
12
detection system
12
rgb-d camera
8
in-vitro test
8
human thigh
8
thigh ultrasound
8
muscle thickness
8
force probe
8
probe surface
8

Similar Publications

Tungsten disulphide nanosheet modulated fluorescent gold nanocluster immunoprobe for the detection of tau peptide: Alzheimer's disease biomarker.

Anal Methods

January 2025

Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.

The neuronal tau peptide serves as a key biomarker for neurodegenerative diseases, specifically, Alzheimer's disease, a condition that currently has no cure or definitive diagnosis. The methodology to noninvasively detect tau levels from body fluids remains a major hurdle for a rapid and simple diagnostic approach. Thus, developing new detection methods for sensing tau protein levels is crucial.

View Article and Find Full Text PDF

Introduction: The number of vertical artefacts (VAs) in lung ultrasound (LUS) impacts patients' clinical management. This study aimed to demonstrate the influence of ultrasound settings on the number of VAs in patients under invasive mechanical ventilation (IMV).

Methods: Patients under IMV were recruited for LUS, including three breathing cycles with a motionless curvilinear probe on the thoracic region with the most VAs.

View Article and Find Full Text PDF

Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, Ga-CBT-PSMA, designed for prostate cancer.

View Article and Find Full Text PDF

APE1-Activated and NIR-II Photothermal-Enhanced Chemodynamic Therapy Guided by Amplified Fluorescence Imaging.

Anal Chem

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.

The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.

View Article and Find Full Text PDF

Unveiling Microscopic Variations during Photodynamic Therapy via Polarity-Responsive Fluorescence Lifetime Imaging.

Anal Chem

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.

Photodynamic therapy is a highly promising method for cancer adjuvant treatment. However, the current research on the microscopic changes during the photodynamic therapy process is still quite limited, which seriously impedes the deep understanding of the procedure. For this purpose, a novel polarity-responsive probe, , with excellent mitochondrial targeting and anchoring capabilities has been rationally designed and synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!