A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic Process Comparison for Subpopulations: Application in Cancer Care. | LitMetric

Automatic Process Comparison for Subpopulations: Application in Cancer Care.

Int J Environ Res Public Health

Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7522 NB Enschede, The Netherlands.

Published: August 2020

Processes in organisations, such as hospitals, may deviate from the intended standard processes, due to unforeseeable events and the complexity of the organisation. For hospitals, the knowledge of actual patient streams for patient populations (e.g., severe or non-severe cases) is important for quality control and improvement. Process discovery from event data in electronic health records can shed light on the patient flows, but their comparison for different populations is cumbersome and time-consuming. In this paper, we present an approach for the automatic comparison of process models that were extracted from events in electronic health records. Concretely, we propose comparing processes for different patient populations by cross-log conformance checking, and standard graph similarity measures obtained from the directed graph underlying the process model. We perform a user study with 20 participants in order to obtain a ground truth for similarity of process models. We evaluate our approach on two data sets, the publicly available MIMIC database with the focus on different cancer patients in intensive care, and a database on breast cancer patients from a Dutch hospital. In our experiments, we found average fitness to be a good indicator for visual similarity in the ZGT use case, while the average precision and graph edit distance are strongly correlated with visual impression for cancer process models on MIMIC. These results are a call for further research and evaluation for determining which similarity or combination of similarities is needed in which type of process model comparison.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460145PMC
http://dx.doi.org/10.3390/ijerph17165707DOI Listing

Publication Analysis

Top Keywords

process models
12
patient populations
8
electronic health
8
health records
8
process model
8
cancer patients
8
process
6
automatic process
4
comparison
4
process comparison
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!