Food allergy is a worldwide health problem that concerns infants to adults. The main health risk for sensitised individuals is due to the presence of traces of allergens as the result of an accidental contamination during food processing. The labelling of allergens such as sesame, pistachio, and macadamia nut on food products is mandatory according to Regulation (EU) N. 1169/2011; therefore, the development of suitable and specific analytical methodologies is advisable. The aim of this study was to perform a multi-allergen real-time PCR system that works well in fast mode at the same annealing temperature and with the same thermal profile. The real-time PCR was developed designing new, specific, and efficient primer and probe systems for the for sesame and pistachio and for the for macadamia nut. These systems were subjected to a robust intra-laboratory qualitative validation process prior to their application, by DNA extraction and fast real-time PCR, on some real market samples to reproduce a potential allergen contamination along the food chain. The developed system results were specific and robust, with a sensible limit of detection (0.005% for sesame; 0.004% for pistachio; 0.006% for macadamia nut). The performance and the reliability of the target systems were confirmed on commercial food samples. This molecular approach could be used as a screening or as a support tool, in association with the other widespread monitoring techniques (such as ELISA).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464690 | PMC |
http://dx.doi.org/10.3390/foods9081085 | DOI Listing |
Plants (Basel)
December 2024
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
Nut set is an important determinant of yield and plays a pivotal role in orchard profitability. The complex process of nut setting is governed by numerous factors, with pollination being a critical mechanism. Macadamia cultivars exhibit both self- and cross-pollination.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
This paper presents the numerical analysis of the influence of air flow rate on the porous structure development of activated carbons prepared from macadamia nut shells. The analyses based on nitrogen and carbon dioxide isotherms were carried out by the new numerical clustering-based adsorption analysis method. Therefore, it was possible to evaluate the porous structure with high precision and reliability.
View Article and Find Full Text PDFFood Chem
December 2024
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:
Food allergy is increasingly prevalent and poses notable health risks, which underscores the urgent need to develop reliable and sensitive detection methods for effective identification of food allergens. This study aims to address the limitations of existing methods by developing an immunoassay utilizing bacteriophage/carbon dots (CDs)@silica core-shell nanospheres. Two CDs with different emission wavelengths (513 nm for Green CDs, 645 nm for Red CDs) were synthesized for signal development and amplification.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Agricultural and Biosystems Engineering, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
Fuelwood is the primary source of heat energy for tea processing, but its availability is declining due to population growth and logging restrictions. This study aimed to optimize the economics of biomass fuel mixtures for tea processing boilers by integrating macadamia nutshells as a supplementary fuelwood. The objective was to develop a cost-effective fuel mix strategy using Response Surface Methodology (RSM) and MATLAB simulations.
View Article and Find Full Text PDFFood Chem
March 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John 's, NL, Canada.
This article presents a comprehensive overview of upcycling commercial nut byproducts (such as Brazil nut, cashew, hazelnut, macadamia, peanut (also known as a legume), pecan, pine nut, pistachio, and walnut) for food, nutraceutical, and pharmaceutical applications. Upcycling nut byproducts, namely husk/hull, hard shell, brown skin, defatted flour/meal/cake, pine cone, cashew nut shell liquid, cashew apple, walnut septum, and dreg/okara, has great potential, not only to reduce/minimise waste, but also to fit within the circular economy concept. Each byproduct has its own unique functional properties, which can bring significant value.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!