An efficient asymmetric synthesis of GlaxoSmithKline's potent PDE4 inhibitor was accomplished in eight steps from a catechol-derived nitroalkene. The key intermediate (3-acyloxymethyl-substituted 1,2-oxazine) was prepared in a straightforward manner by tandem acylation/(3,3)-sigmatropic rearrangement of the corresponding 1,2-oxazine--oxide. The latter was assembled by a (4 + 2)-cycloaddition between the suitably substituted nitroalkene and vinyl ether. Facile acetal epimerization at the C-6 position in 1,2-oxazine ring was observed in the course of reduction with NaBHCN in AcOH. Density functional theory (DFT) calculations suggest that the epimerization may proceed through an unusual tricyclic oxazolo(1,2)oxazinium cation formed via double anchimeric assistance from a distant acyloxy group and the nitrogen atom of the 1,2-oxazine ring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464803 | PMC |
http://dx.doi.org/10.3390/molecules25163613 | DOI Listing |
ACS Med Chem Lett
January 2025
Chemical Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism & Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
Phosphodiesterases (PDEs) have drawn attention due to their critical roles in physiological and pathological conditions. Many research groups have studied these hydrolytic enzymes to develop new drugs, including apremilast as a PDE4 inhibitor and sildenafil as a PDE5 inhibitor. Targeting PDE7 has also been deemed a rational strategy to ameliorate autoimmune conditions.
View Article and Find Full Text PDFJ Invest Dermatol
November 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, Connecticut, USA. Electronic address:
Mol Divers
September 2024
Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
Phosphodiesterases (PDEs) are important intracellular enzymes that hydrolyze the second messengers cAMP and/or cGMP. Now several studies have shown that PDE4 received particular attention due to which it represents the most prominent cAMP-metabolizing enzyme involved in many diseases. In this study, we performed prescreening of our internal compound library and discovered the compound (PTC-209) with moderate PDE4 inhibitory activity (IC of 4.
View Article and Find Full Text PDFBioorg Chem
October 2024
Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India. Electronic address:
Immune-mediated inflammatory diseases (IMIDs) comprise a broad spectrum of conditions characterized by systemic inflammation affecting various organs and tissues, for which there is no known cure. The isoform-specific inhibition of phosphodiesterase-4B (PDE4B) over PDE4D constitutes an effective therapeutic strategy for the treatment of IMIDs that minimizes the adverse effects associated with non-selective PDE4 inhibitors. Thus, we report a new class of isoquinolone derivatives as next-generation PDE4 inhibitors for effective management of rheumatoid arthritis (RA) and psoriasis.
View Article and Find Full Text PDFCochrane Database Syst Rev
August 2024
National Heart & Lung Institute, Section of Inflammation and Repair, Imperial College London, London, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!