An Update on Molecular Tools for Genetic Engineering of Actinomycetes-The Source of Important Antibiotics and Other Valuable Compounds.

Antibiotics (Basel)

Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.

Published: August 2020

The first antibiotic-producing actinomycete () was described by Waksman and Woodruff in 1940. This discovery initiated the "actinomycetes era", in which several species were identified and demonstrated to be a great source of bioactive compounds. However, the remarkable group of microorganisms and their potential for the production of bioactive agents were only partially exploited. This is caused by the fact that the growth of many actinomycetes cannot be reproduced on artificial media at laboratory conditions. In addition, sequencing, genome mining and bioactivity screening disclosed that numerous biosynthetic gene clusters (BGCs), encoded in actinomycetes genomes are not expressed and thus, the respective potential products remain uncharacterized. Therefore, a lot of effort was put into the development of technologies that facilitate the access to actinomycetes genomes and activation of their biosynthetic pathways. In this review, we mainly focus on molecular tools and methods for genetic engineering of actinomycetes that have emerged in the field in the past five years (2015-2020). In addition, we highlight examples of successful application of the recently developed technologies in genetic engineering of actinomycetes for activation and/or improvement of the biosynthesis of secondary metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460540PMC
http://dx.doi.org/10.3390/antibiotics9080494DOI Listing

Publication Analysis

Top Keywords

genetic engineering
12
molecular tools
8
actinomycetes genomes
8
engineering actinomycetes
8
actinomycetes
5
update molecular
4
tools genetic
4
engineering actinomycetes-the
4
actinomycetes-the source
4
source antibiotics
4

Similar Publications

An insight into the applications of bacteriophages against food-borne pathogens.

J Food Sci Technol

January 2025

Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India.

Novel and emerging pathogens, enduring contamination, antibiotic resistance, an environment that is always changing, and the complexity of food production systems all contribute to the worsening of foodborne illness. It has been proposed that bacteriophages can serve as both fast food-borne pathogen detection tools and natural food preservatives in a variety of foods. Phages, like many other antimicrobial interventions used in food production systems, are not a cure-all for issues related to food safety, though.

View Article and Find Full Text PDF

Objective:   accounts for a notable percentage of hospital-acquired infections. The widespread resistance to multiple antibiotic classes complicates treatment efforts. This study aims to find out the pattern of susceptibility of multidrug-resistant  (MDRAB) isolated from clinical specimens to antibiotics recommended for testing and use for and to determine a local guide at Tripoli University Hospital (TUH), Tripoli, Libya for the empirical antibiotic treatment of MDRAB based on the susceptibility pattern identified.

View Article and Find Full Text PDF

Laryngeal squamous cell cancer (LSCC) is one of the most common head and neck cancers in which genetic factors play an important role in its occurrence. This study investigated the association of and gene polymorphisms with the risk of LSCC. polymorphisms including rs712, rs61764370, rs8720, and rs9266, as well as NRAS rs14804, were compared in the patient group (n=120) and the control group (n=100).

View Article and Find Full Text PDF

Rapid introgression of the clubroot resistance gene into cabbage skeleton inbred lines through marker assisted selection.

Mol Breed

February 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.

Unlabelled: Clubroot, caused by , is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the gene, crucial for CR.

View Article and Find Full Text PDF

Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy.

Mater Today Bio

February 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!