A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chlorination of soil-derived dissolved organic matter: Long term nitrogen deposition does not increase terrestrial precursors of toxic disinfection byproducts. | LitMetric

Chlorination of soil-derived dissolved organic matter: Long term nitrogen deposition does not increase terrestrial precursors of toxic disinfection byproducts.

Water Res

Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Published: October 2020

Terrestrial dissolved organic matter (DOM) in forested watersheds is a known precursor of disinfection byproducts (DBPs) in drinking water. Although the characteristics of terrestrial DOM may change with increasing nitrogen (N) deposition in forests, how these changes alter formation potential and toxicity of DBPs remains unexplored. We analyzed the speciation and toxicity of DBPs from chlorination of DOM derived from soils (O, A, and B horizons) in an experimental temperate forest with 22 years of N addition. With long-term N addition, the DOM reactivity toward the formation of trihalomethanes (from 27.7-51.8 to 22.8-31.1 µg/mg-dissolved organic carbon (DOC)) and chloral hydrate (from 1.25-1.63 to 1.14-1.36 µg/mg-DOC) decreased, but that toward the formation of haloketones increased (from 0.23-0.26 to 0.26-0.33 µg/mg-DOC). The DOM reactivity toward the formation of haloacetonitriles was increased in the deeper soil but reduced in the surface soil. The DBP formation potential of DOM draining from a certain area of forest soils (in µg-DBP/m-soil) was estimated to be reduced by 20.3% for trihalomethanes and increased by 37.5% for haloketones and have minor changes for haloacetonitriles and chloral hydrate (both <7%). Furthermore, the DBPs from chlorination of the soil-derived DOM showed lowered microtoxicity with N addition possibly due to reduced brominated DBP formation. Overall, this study highlights that N deposition may not increase drinking water toxicity through altering terrestrial DOM characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.116271DOI Listing

Publication Analysis

Top Keywords

dissolved organic
8
organic matter
8
nitrogen deposition
8
disinfection byproducts
8
formation potential
8
toxicity dbps
8
dom reactivity
8
reactivity formation
8
chloral hydrate
8
dom
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!