Chitosan nanocomposite coatings with enhanced corrosion inhibition effects for copper.

Int J Biol Macromol

Functional Materials, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden. Electronic address:

Published: November 2020

A biopolymer coating on copper was prepared based on chitosan nanocomposite and its corrosion inhibition efficiency was investigated. Inclusion of silica nanoparticles substantially reduces swelling ratio of chitosan coating while enhancing its thermal stability. The corrosion resistance of chitosan-based coatings is improved by introducing 2-mercaptobenzothiazole and silica in the matrix. It is found that upon crosslinking the chitosan coatings, a higher corrosion resistance could be achieved and the highest inhibition efficiency for chitosan nanocomposite coatings is calculated as 85%. The corrosion mechanism is found closely related to mass transition and diffusion process, and also the polarization resistance contributes to the impedance. Calculated impedance using Kramers-Kronig transformation shows good agreement with experimental values, thus validating the impedance measurements. This study exhibits the enhanced efficiency of nanocomposite and potential of chitosan coatings in corrosion prevention for copper.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.08.035DOI Listing

Publication Analysis

Top Keywords

chitosan nanocomposite
12
nanocomposite coatings
8
corrosion inhibition
8
inhibition efficiency
8
corrosion resistance
8
chitosan coatings
8
chitosan
6
corrosion
6
coatings
5
coatings enhanced
4

Similar Publications

Purpose: During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets.

Methods: Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S.

View Article and Find Full Text PDF

Aminated carbon nanotubes, CNT, were covalently modified with glutardialdehyde (GDI) and the redox dye Azure to form a new electrode material CNT-GDI-Azure (CGA). The nanocomposite of CGA and polysaccharide chitosan was used for the anodic determination of NADH. Compared to conventional carbon and metal electrodes, the CGA electrode drastically lowered the overpotential for NADH oxidation (by > 0.

View Article and Find Full Text PDF

Portable Amperometric Biosensor Enhanced with Enzyme-Ternary Nanocomposites for Prostate Cancer Biomarker Detection.

Biosensors (Basel)

December 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.

Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported.

View Article and Find Full Text PDF

Hydrogels are adaptable substances with a 3D framework able to hold large quantities of water, which is why they are ideal for use in the field of biomedicine. This research project focused on creating a new hydrogel combining carboxymethyl chitosan (CMCS), graphene quantum dots (GQDs), pectin (Pe), and MIL-88 for precise and controlled release of the cancer drug doxorubicin (DOX). The creation of CMCS/GQDs@Pe/MIL-88 hydrogel beads was achieved through an eco-friendly one-step synthesis method.

View Article and Find Full Text PDF

Floatable and magnetic MoS/NiFeO/chitosan nanocomposite integrated melamine sponges with hybrid photothermal and photocatalytic enhancement for pollutant removal.

Int J Biol Macromol

December 2024

College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Taizhou, Zhejiang 318000, PR China. Electronic address:

Magnetic chitosan-based materials with good adsorption-photocatalysis and magnetic properties have great prospect in wastewater treatment. In this paper, a floating magnetic molybdenum disulfide/NiFeO/chitosan integrated melamine sponges (m-MoS/CS@MS) was fabricated using chitosan as absorbent and adhesive, MoS and NiFeO as photocatalysts, and melamine sponge as support material. The m-MoS/CS@MS has a rich light-water-air-material interaction interface and can float on the water surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!