X-linked agammaglobulinemia (XLA) is a rare disease that affects the immune system, characterized by a serial development of bacterial infection from the onset of infantile age. Bruton tyrosine kinase (BTK) is a non-receptor cytoplasmic kinase that plays a crucial role in the B-lymphocyte maturation. The altered expression, mutation and/or structural variations of BTK are responsible for causing XLA. Here, we have performed extensive sequence and structure analyses of BTK to find deleterious variations and their pathogenic association with XLA. First, we screened the pathogenic variations in the BTK from a pool of publicly available resources, and their pathogenicity/tolerance and stability predictions were carried out. Finally, two pathogenic variations (E589G and M630K) were studied in detail and subjected to all-atom molecular dynamics simulation for 200 ns. Intramolecular hydrogen bonds (H-bonds), secondary structure, and principal component analysis revealed significant conformational changes in variants that support the structural basis of BTK dysfunction in XLA. The free energy landscape analysis revealed the presence of multiple energy minima, suggests that E589G brings a large destabilization and consequently unfolding behavior compared to M630K. Overall, our study suggests that amino acid substitutions, E589G, and M630K, significantly alter the structural conformation and stability of BTK.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.08.057DOI Listing

Publication Analysis

Top Keywords

amino acid
8
bruton tyrosine
8
tyrosine kinase
8
x-linked agammaglobulinemia
8
variations btk
8
pathogenic variations
8
e589g m630k
8
analysis revealed
8
btk
6
impact amino
4

Similar Publications

Effects of pesticide dichlorvos on liver injury in rats and related toxicity mechanisms.

Ecotoxicol Environ Saf

January 2025

West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China. Electronic address:

Dichlorvos (DDVP) is an organophosphorus pesticide commonly utilized in agricultural production. Recent epidemiological studies suggest that exposure to DDVP correlates with an increased incidence of liver disease. However, data regarding the hepatotoxicity of DDVP remain limited.

View Article and Find Full Text PDF

Feasibility of detecting non-small cell lung cancer using exhaled breath condensate metabolomics.

J Breath Res

January 2025

School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong, 266003, CHINA.

Lung cancer is one of the most common malignancy in the world, and early detection of lung cancer remains a challenge. The exhaled breath condensate (EBC) from lung and trachea can be collected totally noninvasively. In this study, our aim is to identify differential metabolites between non-small cell lung cancer (NSCLC) and control EBC samples and discriminate NSCLC group from control group by orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models.

View Article and Find Full Text PDF

Gastroesophageal reflux is a common physiologic event in infants in which gastric contents pass from the stomach into the esophagus. Gastroesophageal reflux may be asymptomatic or cause regurgitation or "spit up." This occurs daily in approximately 40% of infants.

View Article and Find Full Text PDF

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!