The intestinal epithelium is the first barrier against food contaminants and is highly sensitive to Fusarium toxins, especially deoxynivalenol (DON) and zearalenone (ZEA). Here, we explored the effects of low doses of DON and/or ZEA in naturally moldy diets on intestinal functions in piglets, including inflammatory responses, epithelial barrier, and microbial composition. Piglets were treated with a control diet (CON), DON diet (1000.6 μg/kg), ZEA diet (269.1 μg/kg), and DON + ZEA diet (1007.5 + 265.4 μg/kg), respectively, for 3 weeks and then switched to the same CON diet for another 2 weeks. In the first period, even the selected low doses of DON or ZEA in the diet resulted in intestinal inflammation, diminish protein expression (claudin-4) and altered gut microbiota populations. Whereas upon switching to the CON diet for another 2 weeks, the deleterious effect of ZEA and DON on IL-1β and Bifidobacterium population could not be recovered. Additionally, combined DON and ZEA negatively affected body weight gain and feed consumption of piglets, as well as shown synergistic effects on evoking pro-inflammatory cytokines contents (TNF-α, IL-1β, and IL-6) and perturbing the cecum microbiota profile (E. coli, Lactobacillus, and Bifidobacterium). Collectively, chronic consumption of DON and ZEA contaminated feed or food, even at low doses, can induce intestinal damage and may have consequences for animal and human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2020.07.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!