Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aerobic scope, the difference between standard metabolic requirements and maximum metabolic capacity, is considered a particularly important metric influencing ecological success in fishes. Crude oil exposure can impair cardiorespiratory function in fishes, which reduces maximum metabolic rate, aerobic scope, and may impair ecological performance. Oil exposure is not the only environmental stressor that can affect aerobic scope, especially in areas affected by crude oil spills. Hypoxia (low dissolved oxygen) is also known to constrain maximum metabolic rate, yet there has been little effort to explore how hypoxia may influence the magnitude of metabolic injury following oil exposure. Therefore, our goal was to investigate the effects of acute oil exposure and hypoxia on the metabolic performance of red drum (Sciaenops ocellatus), an economically important fish common in the Gulf of Mexico. Here, sub-adult red drum were exposed to crude oil for 24 h before being exposed to hypoxic conditions following exhaustive exercise. Our results show that hypoxia exposure combined with crude oil exposure results in significantly reduced aerobic scope, which was additive compared to the reductions caused by each stressor alone. We also quantified hypoxia tolerance among treatments following exposure, and our results showed no changes to hypoxia tolerance among individuals, regardless of exposure to hypoxia or oil. These data offer insight into the metabolic constraints facing fishes exposed to oil while concurrently subjected to hypoxia, a notable climate change stressor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.140174 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!