A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Retracted Article: Application of 3D printing technology in orthopedic medical implant - Spinal surgery as an example. | LitMetric

Additive manufacturing has been used in complex spinal surgical planning since the 1990s and is now increasingly utilized to produce surgical guides, templates, and more recently customized implants. Surgeons report beneficial impacts using additively manufactured biomodels as pre-operative planning aids as it generally provides a better representation of the patient's anatomy than on-screen viewing of computed tomography (CT) or magnetic resonance imaging (MRI). Furthermore, it has proven to be very beneficial in surgical training and in explaining complex deformity and surgical plans to patients/parents. This paper reviews the historical perspective, current use, and future directions in using additive manufacturing in complex spinal surgery cases. This review reflects the authors' opinion of where the field is moving in light of the current literature. Despite the reported benefits of additive manufacturing for surgical planning in recent years, it remains a high niche market. This review raises the question as to why the use of this technology has not progressed more rapidly despite the reported advantages - decreased operating time, decreased radiation exposure to patients intraoperatively, improved overall surgical outcomes, pre-operative implant selection, as well as being an excellent communication aid for all medical and surgical team members. Increasingly, the greatest benefits of additive manufacturing technology in spinal surgery are custom-designed drill guides, templates for pedicle screw placement, and customized patient-specific implants. In view of these applications, additive manufacturing technology could potentially revolutionize health care in the near future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415852PMC
http://dx.doi.org/10.18063/ijb.v5i2.168DOI Listing

Publication Analysis

Top Keywords

additive manufacturing
20
spinal surgery
12
manufacturing complex
8
complex spinal
8
surgical planning
8
guides templates
8
despite reported
8
benefits additive
8
manufacturing technology
8
surgical
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!