Pure erythroid leukemia (PEL) is a rare form of acute myeloid leukemia characterized by the neoplastic proliferation of erythroblasts. PEL is associated with inferior survival outcomes, particularly among patients harboring complex karyotype abnormalities. In this case, we present a 21-year-old Sudanese man who presented to our ER with a two-week history of fever, shortness of breath, fatigue, and exercise intolerance. He had no significant personal medical history or family history of malignancy. A bone marrow biopsy revealed hypercellularity and infiltration by cells with an immature appearance. A flow cytometry (FC) analysis of the bone marrow aspirate revealed that approximately 21% of the total nucleated cells were negative for CD45 and positive for CD71, glycophorin A, and CD36 but negative for myeloperoxidase (MPO), CD33, CD13, CD61, CD41, and other lymphoid and myeloid markers. Consistent with the microscopic analysis, <1% of the total cells were identified as CD34/CD13/CD117-positive myeloblasts. Notably, all stains (CD45, MPO, CD34, CD163, CD61, glycophorin A) were negative except E-cadherin, which positively stained >80% of the cells. Our findings suggested a differential diagnosis that included erythroid leukemia and myelodysplastic syndrome (MDS). The morphological, FC, immunohistochemistry, and cytogenetic findings strongly supported a diagnosis of PEL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413316PMC
http://dx.doi.org/10.7759/cureus.9055DOI Listing

Publication Analysis

Top Keywords

erythroid leukemia
12
flow cytometry
8
cytometry analysis
8
pure erythroid
8
bone marrow
8
analysis versus
4
versus e-cadherin
4
e-cadherin immunohistochemistry
4
immunohistochemistry diagnosis
4
diagnosis pure
4

Similar Publications

Overactivation of the Transforming Growth Factor Beta (TGF-β) pathway is implicated in the pathogenesis of cytopenias in Myelodysplastic syndromes (MDS) and Acute Myeloid Leukemia (AML). IOA-359 and IOA-360 are potent small molecule inhibitors of the TGF-beta Receptor type I kinase (TGF-βRI, also referred to as ALK5, activin receptor-like kinase 5) that abrogate SMAD phosphorylation in hematopoietic cell lines. Both inhibitors were able to inhibit TGF-β mediated gene transcription at specific doses.

View Article and Find Full Text PDF

[VEXAS-like auto inflammatory syndrome: 2 cases].

Rev Med Interne

December 2024

Service de médecine interne, CHI Poissy-St Germain, 10, rue du Champs Gaillard, 78300 Poissy, France.

Introduction: VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic), recently described, due to a somatic mutation of the UBA1 gene and often associated with hemopathy, is characterized by systemic symptoms close to those described in Still's disease or relapsing polychondritis. There are also patients with hemopathy, presenting inflammatory symptoms reminiscent of those of VEXAS syndrome but without mutation of the UBA1 gene.

Case/discussion: Two male patients consulted for general signs, dermatological symptoms, arthralgia, chondritis and venous thrombosis, like patients in the French cohort suffering from VEXAS syndrome.

View Article and Find Full Text PDF

Context.—: Blasts in myelodysplastic syndromes (MDSs) typically have a primitive myeloid immunophenotype (CD34+CD117+CD13+CD33+HLA-DR+). On rare occasions, blasts were found to be CD34 negative or minimally expressed in a presumptive MDS.

View Article and Find Full Text PDF

γ-Radiation resistance is a major obstacle to the success of radiotherapy in colorectal cancer. Antioxidant-related factors contribute to resistance to radiation therapy and, therefore, are targets for improving the therapeutic response. In this study, we evaluated the molecular mechanisms underlying γ-radiation resistance using the colorectal cancer cell line SNUC5 and γ-radiation-resistant variant SNUC5/RR, including analyses of the role of nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor that regulates antioxidant enzymes, and related epigenetic regulators.

View Article and Find Full Text PDF

This study focused on the interplay between NADPH oxidase 2 (NOX 2) activation and mitochondrial superoxide (mitoO) formation induced by clinically relevant concentrations of arsenic trioxide (ATO; AsO) in acute promyelocytic leukemia (APL) cells. Carefully controlled inhibitor studies and small interfering RNA mediated downregulation of p47 (a component of the NOX 2 complex) expression demonstrated that, in an APL cell line, ATO promotes upstream NOX 2 activation critically connected with the formation of mitoO and with the ensuing mitochondrial permeability transition (MPT)-dependent apoptosis. Instead, acute myeloid leukemia (AML) cell lines respond to ATO with low NOX 2 activation, resulting in a state that is non-permissive for mitoO formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!