Odd-skipped related transcription factor 1 (OSR1) serves an important role in the development of the intermediate mesoderm; however, its expression in cancer remains unknown. The present study aimed to explore the expression and role of OSR1 in breast cancer development. Immunohistochemistry was performed to detect OSR1 expression in breast cancer tissue and western blot analysis was used to evaluate the expression of OSR1 and related proteins, including β-catenin, c-Myc and cyclin D1. OSR1 expression was increased following transfection of MCF7 cells with OSR1 overexpression vector (MCF7-) and reduced by transfecting MDA-MB-231 cells with small interfering (si)RNA targeting OSR1 (MDA-MB-231-si). Cell proliferation and Matrigel™ invasion assays were used to investigate the effects of OSR1 on the proliferation and invasion of breast cancer cells. OSR1 was downregulated in breast cancer tissue compared with that in normal breast tissue and associated with lymph node metastases and estrogen receptor (ER) expression. Furthermore, reduced expression of OSR1 was associated with poor patient prognosis. Overexpression of OSR1 inhibited the proliferation and invasion of breast cancer cells. Western blot analysis of MCF7- cells demonstrated that compared with that in the control cells, the expression of E-cadherin was increased, whereas that of key epithelial-mesenchymal transition (EMT) proteins, N-cadherin and Snail, was decreased. In addition, overexpression of OSR1 significantly decreased the expression level of β-catenin and Wnt target genes, such as c-Myc and cyclin D1, compared with that in the control cells. These expression patterns were reversed in the MDA-MB-231-si cells. The results of the present study suggested that OSR1 downregulates the activity of the Wnt signaling pathway and EMT, which inhibits the proliferative and invasive abilities of breast cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400961PMC
http://dx.doi.org/10.3892/ol.2020.11820DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
cancer cells
16
osr1
13
proliferation invasion
12
invasion breast
12
cells
10
expression
10
reduced expression
8
odd-skipped transcription
8
transcription factor
8

Similar Publications

Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics.

Eur J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.

View Article and Find Full Text PDF

Analysis of circulating cell-free nuclear and mitochondrial DNA in plasma of Mexican patients with breast cancer.

Gac Med Mex

January 2025

División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara.

Background: The usefulness of circulating free DNA (cfDNA), nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) as potential biomarkers in cancer remains controversial.

Objective: To determine the concentration of cfDNA and plasma nDNA and mtDNA levels in breast cancer (BC) patients.

Material And Methods: This study included a total of 86 women (69 patients with BC and 17 women as a control group).

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast malignancy. Although some patients benefit from immune checkpoint therapy, current treatment methods rely mainly on chemotherapy. It is imperative to develop predictors of efficacy and identify individuals who will be sensitive to particular treatment regimens.

View Article and Find Full Text PDF

Background: CT thorax, abdomen and pelvis (CT-TAP) remains the standard in the identification of metastatic disease in patients with newly diagnosed breast cancer. In patients with proven micro and macro axillary nodal metastasis, the optimal radiological technique remains controversial. A consensus on which patients with axillary nodal disease should receive radiological staging for distant disease and how this should be performed is not currently available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!