AI Article Synopsis

  • Consolidated bioprocessing aims to lower costs in lignocellulosic biorefineries by utilizing a single microorganism for both breaking down biomass and fermentation, particularly focusing on the effective use of xylose from hemicellulose.
  • Research evaluated industrial microbial strains with traits like thermotolerance for their ability to produce ethanol directly from corn cob-derived hemicellulosic liquor, achieving significant ethanol yields without external enzymes.
  • The findings suggest that using these modified strains for consolidated bioprocessing is more efficient than traditional methods, highlighting a potential path to improving the economic and environmental viability of lignocellulosic biomass conversion.

Article Abstract

Background: Consolidated bioprocessing, which combines saccharolytic and fermentative abilities in a single microorganism, is receiving increased attention to decrease environmental and economic costs in lignocellulosic biorefineries. Nevertheless, the economic viability of lignocellulosic ethanol is also dependent of an efficient utilization of the hemicellulosic fraction, which contains xylose as a major component in concentrations that can reach up to 40% of the total biomass in hardwoods and agricultural residues. This major bottleneck is mainly due to the necessity of chemical/enzymatic treatments to hydrolyze hemicellulose into fermentable sugars and to the fact that xylose is not readily consumed by -the most used organism for large-scale ethanol production. In this work, industrial strains, presenting robust traits such as thermotolerance and improved resistance to inhibitors, were evaluated as hosts for the cell-surface display of hemicellulolytic enzymes and optimized xylose assimilation, aiming at the development of whole-cell biocatalysts for consolidated bioprocessing of corn cob-derived hemicellulose.

Results: These modifications allowed the direct production of ethanol from non-detoxified hemicellulosic liquor obtained by hydrothermal pretreatment of corn cob, reaching an ethanol titer of 11.1 g/L corresponding to a yield of 0.328 g/g of potential xylose and glucose, without the need for external hydrolytic catalysts. Also, consolidated bioprocessing of pretreated corn cob was found to be more efficient for hemicellulosic ethanol production than simultaneous saccharification and fermentation with addition of commercial hemicellulases.

Conclusions: These results show the potential of industrial strains for the design of whole-cell biocatalysts and paves the way for the development of more efficient consolidated bioprocesses for lignocellulosic biomass valorization, further decreasing environmental and economic costs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414751PMC
http://dx.doi.org/10.1186/s13068-020-01780-2DOI Listing

Publication Analysis

Top Keywords

consolidated bioprocessing
16
bioprocessing corn
8
corn cob-derived
8
environmental economic
8
economic costs
8
ethanol production
8
industrial strains
8
whole-cell biocatalysts
8
corn cob
8
consolidated
5

Similar Publications

Integrated production of bioethanol and biomethane from rice waste using superior amylolytic recombinant yeast.

Bioresour Technol

December 2024

Waste to Bioproducts-Lab, Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. Electronic address:

This study utilized a circular economy approach to convert unripe rice, a low-cost by-product of the rice milling industry, into biofuels using a biorefinery process. The recombinant yeast Saccharomyces cerevisiae ER T12.7 strain was tested for its ability to produce ethanol from unripe rice.

View Article and Find Full Text PDF

Waste-centred-bioenergy generation have been garnering interest over the years due to environmental impact presented by fossil fuels. Waste generation is an unavoidable consequence of urbanization and population growth. Sustainable waste management techniques that are long term and environmentally benign are required to achieve sustainable development.

View Article and Find Full Text PDF

Research advances on the consolidated bioprocessing of lignocellulosic biomass.

Eng Microbiol

June 2024

State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, China.

Article Synopsis
  • *Consolidated bioprocessing (CBP) combines enzyme production, saccharification, and fermentation into one step using specific microbes, offering a more efficient approach to biomass conversion.
  • *The review discusses various CBP strategies, including natural, biosynthetic, and co-culturing microorganisms, and highlights innovative ways to utilize lignocellulosic biomass for producing valuable chemicals.
View Article and Find Full Text PDF

Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing.

Eng Microbiol

December 2024

State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.

The depletion of fossil fuels and their impact on the environment have led to efforts to develop alternative sustainable fuels. While biofuel derived from lignocellulose is considered a sustainable, renewable, and green energy source, enhancing biofuel production and achieving a cost-effective bioconversion of lignocellulose at existing bio-refineries remains a challenge. Consolidated bioprocessing (CBP) using thermophiles can simplify this operation by integrating multiple processes, such as hydrolytic enzyme production, lignocellulose degradation, biofuel fermentation, and product distillation.

View Article and Find Full Text PDF

Lifecycle DoE-The Companion for a Holistic Development Process.

Bioengineering (Basel)

October 2024

Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany.

Article Synopsis
  • * It introduces the Life-Cycle-Design of Experiments (LDoE) methodology, which integrates various data and enhances model predictions by allowing for flexible design adjustments during the development process.
  • * The LDoE approach consolidates all experimental data into one cohesive model, enabling timely identification of critical process parameters, which can lead to more effective and efficient process development.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!