The time course of the response of carbohydrate metabolism to unloading was studied in the soleus muscle of rats subjected to tail-cast suspension. In the fresh soleus, just 12 hours of unloading led to higher concentrations of glycogen and lower activity ratios of both glycogen synthase and glycogen phosphorylase. These changes were still evident on day 3. This initial accumulation of glycogen was likely due to its decreased degradation in response to muscle disuse. Thereafter, the increased glycogen concentration apparently diminished the activity ratio of glycogen synthase, leading to a subsequent fall in the total glycogen content after day 1. After 24 hours of unloading, when no significant atrophy was detectable, there was no differential response to insulin for in vitro glucose metabolism. As reported for day 6 (reference 6), on day 3 the soleus atrophied significantly and displayed a greater sensitivity to insulin for most of these parameters compared to the weight-bearing control muscle. However, insulin sensitivity for glycogen synthesis was unchanged. These results showed that the increased sensitivity to insulin of the unloaded soleus is associated with the degree of muscle atrophy, likely due to an increased insulin binding capacity relative to muscle mass. This study also showed that insulin regulation of glucose uptake and of glycogen synthesis is affected differentially in the unloaded soleus muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0026-0495(88)90096-0DOI Listing

Publication Analysis

Top Keywords

glycogen
9
time course
8
course response
8
response carbohydrate
8
carbohydrate metabolism
8
metabolism unloading
8
soleus muscle
8
hours unloading
8
glycogen synthase
8
sensitivity insulin
8

Similar Publications

Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA).

View Article and Find Full Text PDF

Background: Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase. This condition leads to muscle weakness, respiratory problems, and heart abnormalities in affected individuals.

Methods: The aim of the study is to share our experience through cross sectional study of patients with infantile-onset Pompe disease (IOPD) with different genetic variations, resulting in diverse clinical presentations.

View Article and Find Full Text PDF

Background: Vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) inhibitors play a pivotal role in treating various tumors; however, the clinical characteristics and molecular mechanisms of their associated heart failure (HF) remain incompletely understood.

Methods: We investigated the epidemiological characteristics of VEGF or VEGFR inhibitors [VEGF(R)i]-related heart failure (VirHF) using the global pharmacovigilance database Vigibase. The phenotypic features and molecular mechanisms of VirHF were characterized using VEGF(R)i-treated mouse models through a combination of echocardiography, histopathological analysis, and transcriptome sequencing.

View Article and Find Full Text PDF

Homozygous missense variant in causes early-onset neurodegeneration, leukoencephalopathy and autoinflammation.

J Med Genet

January 2025

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

Biallelic pathogenic variants in cause a fatal autosomal recessive multisystem disorder characterized by recurrent autoinflammation, hypomyelination, progressive neurodegeneration, microcephaly, failure to thrive, liver dysfunction, respiratory chain defects and accumulation of glycogen in skeletal muscle. No missense variants in have been reported to date.We report a 6-year-old boy with microcephaly, global developmental delays, lower limb spasticity with hyperreflexia, epilepsy, abnormal brain MRI, failure to thrive, recurrent fevers and transaminitis.

View Article and Find Full Text PDF

Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!