Kernel morphology is one of the major yield traits of wheat, the genetic architecture of which is always important in crop breeding. In this study, we performed a genome-wide association study (GWAS) to appraise the genetic architecture of the kernel traits of 319 wheat accessions using 22,905 single nucleotide polymorphism (SNP) markers from a wheat 90K SNP array. As a result, 111 and 104 significant SNPs for Kernel traits were detected using four multi-locus GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, and pLARmEB) and three single-locus models (FarmCPU, MLM, and MLMM), respectively. Among the 111 SNPs detected by the multi-locus models, 24 SNPs were simultaneously detected across multiple models, including seven for kernel length, six for kernel width, six for kernels per spike, and five for thousand kernel weight. Interestingly, the five most stable SNPs (RAC875_29540_391, Kukri_07961_503, tplb0034e07_1581, BS00074341_51, and BobWhite_049_3064) were simultaneously detected by at least three multi-locus models. Integrating these newly developed multi-locus GWAS models to unravel the genetic architecture of kernel traits, the mrMLM approach detected the maximum number of SNPs. Furthermore, a total of 41 putative candidate genes were predicted to likely be involved in the genetic architecture underlining kernel traits. These findings can facilitate a better understanding of the complex genetic mechanisms of kernel traits and may lead to the genetic improvement of grain yield in wheat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460857 | PMC |
http://dx.doi.org/10.3390/ijms21165649 | DOI Listing |
J Econ Entomol
January 2025
Department of Entomology and Plant Pathology, North Carolina State University, the Vernon G. James Research and Extension Center, Plymouth, NC, USA.
Transgenic corn (Zea mays L.) expressing insecticidal toxins from Bacillus thuringiensis (Bt) helps to control or suppress injury from a range of target insect pests. This study summarizes the yield benefits of Bt corn from field trials in Georgia, North Carolina, and South Carolina evaluating Bt and non-Bt corn hybrids from 2009 to 2023.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Collage of Arts and Sciences, Qatar University, Doha, Qatar.
Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.
View Article and Find Full Text PDFLife (Basel)
December 2024
Agricultural Botany Department (Plant Pathology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt.
Late wilt disease caused by the fungal pathogen represents a major threat to maize cultivation in the Mediterranean region. Developing resistant hybrids and high-yielding offers a cost-effective and environmentally sustainable solution to mitigate yield losses. Therefore, this study evaluated genetic variation, combining abilities, and inheritance patterns in newly developed twenty-seven maize hybrids for grain yield and resistance to late wilt disease under artificial inoculation across two growing seasons.
View Article and Find Full Text PDFBiology (Basel)
November 2024
College of Agriculture, Tarim University, Alar 843300, China.
To better understand the growth adaptability of various maize varieties to the climate of the Alar region in Southern Xinjiang Province, an experiment was conducted using seven distinct maize varieties as test materials. A one-way randomized block design was applied to both experimental groups. In 2021 and 2022, a total of 19 indicators were observed for comparative analysis, including antioxidant enzyme activities and agronomic traits.
View Article and Find Full Text PDFMol Breed
January 2025
Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China.
Unlabelled: Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!