COVID-19 is lasting longer than expected, which has a huge impact on the economy and on personal life. Each country has a different response method, and the damage scale is also distinct. This study aims to find out how COVID-19-related news was handled in the domestic media to seek ways to minimize the pandemic. The paper focuses on the number of news features by period and by disaster and analyzes related words based on big data. The results of the analysis are as follows. First, in the initial response phase, keywords to identify accurate sources of actual broadcast contents, fake news, social networking service (SNS), etc. were also ranked in the top 20. Second, in the active response phase, when the number of confirmed persons and the government's countermeasures were announced, more than 100 COVID-19-related articles were issued, and the related words increased rapidly from the initial response stage. Therefore, the fact that COVID-19 has been expressed as a keyword indicates that our society is watching with great interest in the government's response to the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459752 | PMC |
http://dx.doi.org/10.3390/ijerph17165688 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!