Visual-inertial navigation systems are credited with superiority over both pure visual approaches and filtering ones. In spite of the high precision many state-of-the-art schemes have attained, yaw remains unobservable in those systems all the same. More accurate yaw estimation not only means more accurate attitude calculation but also leads to better position estimation. This paper presents a novel scheme that combines visual and inertial measurements as well as magnetic information for suppressing deviation in yaw. A novel method for initializing visual-inertial-magnetic odometers, which recovers the directions of magnetic north and gravity, the visual scalar factor, inertial measurement unit (IMU) biases etc., has been conceived, implemented, and validated. Based on non-linear optimization, a magnetometer cost function is incorporated into the overall optimization objective function as a yawing constraint among others. We have done extensive research and collected several datasets recorded in large-scale outdoor environments to certify the proposed system's viability, robustness, and performance. Cogent experiments and quantitative comparisons corroborate the merits of the proposed scheme and the desired effect of the involvement of magnetic information on the overall performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472289 | PMC |
http://dx.doi.org/10.3390/s20164386 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!