Key MicroRNA's and Their Targetome in Adrenocortical Cancer.

Cancers (Basel)

Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.

Published: August 2020

Adrenocortical Carcinoma (ACC) is a rare but aggressive malignancy with poor prognosis and limited response to available systemic therapies. Although complete surgical resection gives the best chance for long-term survival, ACC has a two-year recurrence rate of 50%, which poses a therapeutic challenge. High throughput analyses focused on characterizing the molecular signature of ACC have revealed specific micro-RNAs (miRNAs) that are associated with aggressive tumor phenotypes. MiRNAs are small non-coding RNA molecules that regulate gene expression by inhibiting mRNA translation or degrading mRNA transcripts and have been generally implicated in carcinogenesis. This review summarizes the current insights into dysregulated miRNAs in ACC tumorigenesis, their known functions, and specific targetomes. In addition, we explore the possibility of particular miRNAs to be exploited as clinical biomarkers in ACC and as potential therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465134PMC
http://dx.doi.org/10.3390/cancers12082198DOI Listing

Publication Analysis

Top Keywords

acc
5
key microrna's
4
microrna's targetome
4
targetome adrenocortical
4
adrenocortical cancer
4
cancer adrenocortical
4
adrenocortical carcinoma
4
carcinoma acc
4
acc rare
4
rare aggressive
4

Similar Publications

Fatty Acid Esterification of Octacosanol Attenuates Triglyceride and Cholesterol Synthesis in Mice.

J Agric Food Chem

January 2025

Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand.

This study aimed to evaluate the cholesterol-regulatory effects of lauric-acid-esterified octacosanol (LEO) and oleic-acid-esterified octacosanol (OEO) compared to their unmodified counterparts and to investigate the underlying mechanisms by partially substituting the fat content in obese C57BL/6J mice induced with a high-fat diet (HFD). Rice bran oil and coconut oil were also investigated as they are rich in oleic acid and lauric acid, respectively. The results showed that all supplemented groups significantly inhibited weight gain induced by the HFD, but the groups treated with esterified octacosanol exhibited a more pronounced effect.

View Article and Find Full Text PDF

Retinal Changes After Acute and Late Optic Neuritis in Aquaporin-4 Antibody Seropositive NMOSD.

J Neuroophthalmol

December 2024

Experimental and Clinical Research Center (FCO, HGZ, SM, CB, ESA, CC, FP, AUB), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Center (FCO, HGZ, SM, CB, ESA, CC, FP, AUB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Neurology (AJG), University of California San Francisco, San Francisco, California; Neurology (RM, ACC), Multiple Sclerosis, Myelin Disorders and Neuroinflammation Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, France; Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (ACC), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Experimental Neurophysiology Unit (LL, MP, M. Radaelli), Institute of Experimental Neurology (INSPE) Scientific Institute, Hospital San Raffaele and University Vita-Salute San Raffaele, Milan, Italy; Hospital Clinic of Barcelona-Institut d'Investigacions (PV, BS-D, EHM-L), Biomèdiques August Pi Sunyer, (IDIBAPS), Barcelona, Spain; CIEM MS Research Center (MAL-P, MAF), University of Minas Gerais, Medical School, Belo Horizonte, Brazil; Department of Neurology (OA, M. Ringelstein, PA), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Neurology (M. Ringelstein), Centre for Neurology and Neuropsychiatry, LVR Klinikum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Medicine (MRY), Harbor-University of California at Los Angeles (UCLA) Medical Center, and Lundquist Institute for Biomedical Innovation, Torrance, California; Department of Medicine (MRY), David Geffen School of Medicine at UCLA, Los Angeles, California; Departments of Ophthalmology and Visual Sciences (TJS), Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan; Division of Metabolism, Endocrine and Diabetes (TJS, LC), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Department of Neurology (FP), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; and Department of Neurology (AUB), University of California, Irvine, California.

View Article and Find Full Text PDF

This study is the first to explore the effects of the novel yellow pigment monascinol (Msol) from red mold rice (RMR) on reducing body fat and to compare its effects with those of monascin (MS) and ankaflavin (AK). In a high-fat diet-induced rat model, different doses of RMR fermented rice (RL, RM, RH) and purified Msol, MS, and AK were administered over an 8-week period. The results showed that all treatment groups significantly reduced body weight and fat mass.

View Article and Find Full Text PDF

Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.

Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!