Drum roasted products are used to impart colour, flavour and mouthfeel to beers. Here we designed a laboratory-scale roaster (100 g batch size) capable of precise time-temperature control and investigated the impacts of time, temperature and roasting substrate (barley, pale malt or germinated green malt) on formation of 20 key odour active aroma volatiles. Principal Components Analysis (PCA) of flavour volatile data across 37 laboratory roasted and 6 commercial roasted products generated a product flavour space depicting the relationship between roasting conditions and concentrations of these 20 compounds. Response surface models were produced for aroma compound concentrations across the design space of roasting times and temperatures for each substrate. These clearly illustrate the impacts of substrate moisture content and prior history (e.g. whether germinated or germinated and kilned) on flavour formation. In low moisture substrates a steep increase in associated heterocyclic aroma compound production was noted at process temperatures >180 °C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.127641 | DOI Listing |
Sci Rep
December 2024
University of Jammu, Jammu and Kashmir, 180006, India.
Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Key Laboratory in Flavor and Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China.
Cigar tobacco leaves exhibited distinct regional characteristics, and aroma compounds were the key substances determining the different style features of cigars. However, the differences in aroma characteristics and the mechanisms of key aroma compound synthesis have not been fully elucidated. This study collected filler tobacco leaves (FTLs) from 5 representative domestic and international production regions.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
Alzheimer's is an advanced nervous disorder related to aging. The present study aimed to determine the effect of eight-week aerobic training, along with the consumption of Linalool, Cineole, and β-Bourbonene, on the prevention and improvement of Alzheimer's disease. Mice were randomly assigned to 8 groups: control group, mice induced with Alzheimer's disease treated with β-amyloid (Alzheimer group), Alzheimer's mice treated with bioactive compounds of herbal medicine (Linalool with a concentration of 25 mg/kg, Cineole with a concentration of 100 mg/kg, and β-Bourbonene with a concentration of 10 μg/ml) by gavage for 8 weeks (Alzheimer+Biocompounds group), Alzheimer's mice treated with aerobic exercise with a moderate intensity treadmill for 8 weeks (Alzheimer's+Training group), Alzheimer's mice treated with bioactive compounds of herbal medicine and aerobic exercise for 8 weeks (Alzheimer+Biocompounds+Training group), healthy mice initially treated with bioactive compounds of herbal medication (Linalool with a concentration of 25 mg/kg, Cineol with a concentration of 100 mg/kg, and β-Bourbonene with a concentration of 0.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
February 2025
Department of Nephropathy, Xi'an Central Hospital, Xi'an, China.
Myocardial dysfunction is a crucial determinant of the development of heart failure in salt-sensitive hypertension. Ferroptosis, a programmed iron-dependent cell death, has been increasingly recognised as an important contributor to the pathophysiology of various cardiovascular diseases. This study aims to investigate the role and underlying mechanism of ferroptosis in high-salt (HS)-induced myocardial damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!