A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys.

Adv Colloid Interface Sci

Dep Nanotechnology, University of Miskolc, Egyetemvaros, Miskolc 3515, Hungary; MTA ME Materials Science Research Group, Egyetemvaros, Miskolc 3515, Hungary. Electronic address:

Published: September 2020

In this paper first a generally valid model is derived from the two fundamental equations of Gibbs for temperature and composition dependences of all types of interfacial energies. This general model is applied here to develop a coherent set of particular model equations for surface tension of liquid metals and alloys, for surface energy of solid metals and alloys, for high-angle grain boundary energy in metals and alloys, for solid/liquid interfacial energy in metals and alloys, for liquid/liquid interfacial energy in alloys and for solid/solid interfacial energy in metals and alloys. The latter case is sub-divided into models on coherent, incoherent and semi-coherent interfaces with the same phases and with different phases on the two sides of the interface. Model parameters are given here as an example for the 111 plane of fcc metals and alloys. For other crystal planes or other crystal structures the model parameters should be adjusted, while the model equations remain the same. The method is demonstrated on various surface and interfacial energies of pure Au, on solid/liquid interfacial energy in the AlCu system, on different types of solid/solid interfacial energies in the AuNi system, on solid/solid, solid/liquid and liquid/liquid interfacial energies in the AlPb system and on the coherent, incoherent and semi-coherent interfacial energies between ordered and disordered fcc phases in the Ni-rich part of the NiAl system. The ability of this method is demonstrated to predict surface and interface transition along free surfaces and grain boundaries and also negative interfacial energies in nano-systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2020.102212DOI Listing

Publication Analysis

Top Keywords

metals alloys
28
interfacial energies
24
interfacial energy
16
model equations
12
energy metals
12
interfacial
10
coherent set
8
set model
8
equations surface
8
surface interface
8

Similar Publications

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

This work examines the effects of Nb and Nb-B additives on the high-temperature flow behavior and mechanical properties of low-carbon steel. The base, 0.015% Nb-bearing (15Nb alloy), and 0.

View Article and Find Full Text PDF

Theory of giant magnetoelastic effect in soft systems.

Sci Adv

January 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Having been predominantly observed in rigid metal and metal alloys since 1865, the magnetoelastic effect was recently experimentally discovered in a soft matter system and used as a new working mechanism for energy and health care applications. Here, a theoretical framework is presented and proven to be universally accurate and robust in interpreting the giant magnetoelastic effect across soft systems subjected to various deformation modes, micromagnet concentrations, magnetization profiles, and geometric structures. The theory uncovers substantial, unique magnetoelastic phenomena in soft systems, including the magnetic pole reversal under localized compression.

View Article and Find Full Text PDF

Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.

View Article and Find Full Text PDF

Phase Control in Monometallic and Alloy Nanomaterials.

Chem Rev

January 2025

Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.

Metal nanomaterials with unconventional phases have been recently developed with a variety of methods and exhibit novel and attractive properties such as high activities for various catalytic reactions and magnetic properties. In this review, we discuss the progress and the trends in strategies for synthesis, crystal structure, and properties of phase-controlled metal nanomaterials in terms of elements and the combination of alloys. We begin with a brief introduction of the anomalous phase behavior derived from the nanosize effect and general crystal structures observed in metal nanomaterials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!