A 120-day feeding trial was conducted to investigate the effects of relative higher and lower dietary protein levels on the growth, immunity and anti-stress of abalone Haliotis discus hannai fed diets with 17.64% (low), 30.49% (normal) and 43.27% (high) of proteins, respectively. The results showed that compared with 30.49% of dietary protein, 17.64% and 43.27% of dietary protein levels significantly decreased the weight gain rate and the activities of α-amylase, trypsin, alanine aminotransferase and aspartate aminotransferase in the hepatopancreas and serum of abalone (P < 0.05). Abalone fed 30.49% of dietary protein had the highest activity of superoxidase, acid phosphatase, alkaline phosphatase, lysozyme and the total anti-oxidative capacity, and the lowest content of malondialdehyde in the serum and hepatopancreas (P < 0.05). The gene expressions of TOR, S6k, Bcl-2, IκB, NfκB, TNF-α and Nrf were significantly up-regulated in the group with 30.49% of dietary protein (P < 0.05). Pathological abnormalities in hepatocyte cells of abalone were found in the groups with 17.64% and 43.27% of dietary protein. Meanwhile, accumulative mortalities of abalone after the Vibrio parahaemolyticus challenge test and heat stress test were significantly increased within these two groups (P < 0.05). In conclusion, the excessive (43.27) or deficient (17.64) dietary protein levels depressed the growth and immunity of abalone. Combined with the stress tests results, 17.63% or 43.27% of dietary protein contents are not recommended to the abalone facing the stress of vibriosis or high-water temperature (≥28 °C).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2020.08.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!