Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The bioactivity of enzymes is sensitive to certain factors in their application environment, such as the pH, temperature, ionic strength, and additives, which can alter the native conformation of enzymes. To determine the mechanism by which the interaction of SDS influences the structure and activity of trypsin, molecular docking, molecular dynamics simulations, DSC, and multi-spectroscopic measures including UV absorption, fluorescence, and circular dichroism were used. The results show that the hydrolytic activity towards casein could be dramatically restrained by SDS. UV absorption, CD, and fluorescence spectra demonstrated the formation of a trypsin-SDS complex. Thermodynamic parameters and molecular docking data revealed that the binding process was spontaneous, and that the main binding forces between SDS and trypsin were hydrogen bonds and van der Waals forces. In addition, molecular docking predicted that the binding site of SDS on trypsin was located at the active center. Molecular dynamic simulations showed that treatment with SDS resulted in the structure of trypsin becoming unstable and unfolded near its active center. This work provides insights into the interaction of SDS with trypsin on the molecular level and is beneficial to understanding of how SDS affects the conformation and activity of trypsin in application processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.08.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!