AI Article Synopsis

  • * Mice were divided into three groups: a control group, a group exposed to scrotal hyperthermia, and a group treated with curcumin-loaded iron nanoparticles, with treatments conducted for 20 days.
  • * Results showed that the curcumin treatment improved testis size, sperm quality, and increased testosterone levels, also enhancing the expression of important genes related to cell development in comparison to the hyperthermia-only group.

Article Abstract

Spermatogenesis process is sensitive to heat stress because the testicular temperature is 2 to 4 °C lower than the core body temperature. The current study aimed to investigate the effects of iron oxide nanoparticles containing curcumin on spermatogenesis in mice induced by long-term scrotal hyperthermia. In this experimental study, 18 mice were equally divided into the following three groups: control, scrotal hyperthermia, and scrotal hyperthermia + curcumin-loaded iron particles (NPs) (240 μL) (mice were treated for 20 days). Hyperthermia was induced by exposure to the temperature of 43 °C for 20 min every other day for 5 weeks. Afterward, the animals were euthanized; sperm samples were collected for sperm parameters analysis, and testis samples were taken for histopathology experiments, evaluation of serum testosterone level, and RNA extraction in order to examine the expression of c-kit, STRA8 and PCNA genes. Our study showed that curcumin-loaded iron particles could notably increase the volume of testis, length of seminiferous tubules, sperm parameters, and stereological parameters (i.e., spermatogonia, primary spermatocyte, round spermatid, and Leydig cells) thereby increasing serum testosterone level; in addition, TUNEL-positive cells showed a significant decrease in curcumin-loaded iron particle group. Thus, based on the obtained results, the expression of c-kit, STRA8, and PCNA genes was significantly increased in treatment groups by curcumin-loaded iron particles compared with scrotal hyperthermia-induced mice. In conclusion, curcumin-loaded iron particles can be considered an alternative treatment for improving the spermatogenesis process in scrotal hyperthermia-induced mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43032-020-00288-2DOI Listing

Publication Analysis

Top Keywords

curcumin-loaded iron
24
scrotal hyperthermia
16
iron particles
16
iron particle
8
induced long-term
8
long-term scrotal
8
spermatogenesis process
8
sperm parameters
8
serum testosterone
8
testosterone level
8

Similar Publications

A Novel Curcumin-Loaded Nanoplatform Alleviates Osteoarthritis by Inhibiting Chondrocyte Ferroptosis.

Macromol Rapid Commun

September 2024

Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Shenzhen Key Laboratory of Orthopedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China.

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the degradation of articular cartilage. Recent studies have demonstrated that chondrocyte ferroptosis plays a crucial role in the progression of OA. Consequently, developing nanomedicines that suppress chondrocyte ferroptosis is a promising strategy for OA treatment.

View Article and Find Full Text PDF

Here, we assess the therapeutic effects of photobiomodulation (PBM) and curcumin (CUR)-loaded superparamagnetic iron oxide nanoparticles (SPIONs), alone or together, on the maturation step of a type 1 diabetes (DM1) rat wound model. Full-thickness wounds were inflicted in 36 rats with diabetes mellitus (DM) induced by the administration of streptozotocin (STZ). The rats were randomly allocated to four groups.

View Article and Find Full Text PDF

Carrier-mediated drug delivery systems are highly promising as a treatment option for the targeted delivery of potent cytotoxic drugs with increased efficacy and safety. Considering that poly (lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) polymers each provide certain advantages for biological purposes, PEGylated-PLGA nanoparticles have emerged as a leading candidate among other alternatives. Furthermore, these nanoparticles can be modified with the specific short peptide sequences such as glycine-arginine-glycine-aspartic acid‑serine (GRGDS), which selectively binds to integrins overexpressed in most cancer cells, allowing for targeted delivery.

View Article and Find Full Text PDF

Herein, we attempted to evaluate the therapeutic potential of photobiomodulation (PBM) and curcumin-loaded iron nanoparticles (CUR), alone and in combination, on wound closure rate (WCR), microbial flora by measuring colony-forming units (CFUs), the stereological and biomechanical properties of repairing wounds in the maturation stage of the wound healing course in an ischemic infected delayed healing wound model (IIDHWM) of type I diabetic (TIDM) rats. There were four groups: group 1 was the control, group 2 received CUR, rats in group 3 were exposed to PBM (80 Hz, 890 nm, and 0.2 J/cm), and rats in group 4 received both PBM and CUR (PBM + CUR).

View Article and Find Full Text PDF

Nanotechnology, using drug carriers, has gained remarkable achievements in treating cancer by inhibiting the adverse effects of traditional therapeutic methods, such as applying curcumin. Using chitosan could help to target tumors, without harming healthy cells. Also, magnetic iron oxide provides a high specific area to increase the capability of the nano-scale vehicle to load curcumin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!