Cervical cancer (CC) is the fourth most common cancer in women; the survival rates depend strongly on its early detection. The Pap test is the most frequently used diagnostic tool, but due to its limited sensitivity/specificity, additional screening tests are needed. Therefore, we evaluated the use of micronucleus (MN) assays with cervical cells for the prediction and diagnosis of CC. MN reflects structural and numerical chromosomal aberrations. A search was performed in Pubmed, Scopus, Thomson ISI and Google Scholar. Subsequently, meta-analyses were performed for different grades of abnormal findings in smears and biopsies from patients which were diagnosed with CC. Results of 21 studies in which findings of MN experiments were compared with data from Pap tests show that higher MN frequencies were found in women with abnormal cells that are indicative for increased cancer risks. MN frequency ratios increased in the order inflammation (2.1) < ASC-US and ASC-H (3.3) < LGSIL (4.4) < HGSIL (8.4). Furthermore, results are available from 17 investigations in which MN were scored in smears from patients with neoplasia. MN rates increased with the degree of neoplasia [CIN 1 (4.6) < CIN 2 (6.5) and CIN 3 (10.8)] and were significantly higher (8.8) in CC patients. Our meta-analysis indicates that the MN assay, which is easy to perform in combination with Pap tests, may be useful for the detection/prediction of CC. However, standardization (including definition of the optimal cell numbers and stains) and further validation is necessary before the MN test can be implemented in routine screening.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgaa087DOI Listing

Publication Analysis

Top Keywords

micronucleus assays
8
cervical cancer
8
pap tests
8
assays prediction
4
prediction detection
4
detection cervical
4
cancer
4
cancer meta-analysis
4
meta-analysis cervical
4
cancer fourth
4

Similar Publications

HemoHIM is a functional food ingredient comprising a triple herbal combination of extracts from Nakai, Makino, and Pallas. It was developed to aid the recovery of impaired immune function. Although it is widely used to treat various immune disorders in Korea, its potential toxicity has not been extensively investigated.

View Article and Find Full Text PDF

The highly valued oil of Mill. (Rosaceae), widely used in high perfumery, cosmetics, and other spheres of human life, obliges us to know and study the safety profile of the product obtained from the water-steam distillation of fresh rose petals. The genotoxicity of the essential oil (EsO) has not been thoroughly studied despite its wide range of applications.

View Article and Find Full Text PDF

Abnormal chromosome segregation (ACS) in preimplantation embryos causes miscarriages. For a normal pregnancy, it is necessary to reduce ACS occurrences in embryos. However, the causes of such abnormalities are unclear because no method to extract the segregated chromosomes from the blastomeres for detailed analysis.

View Article and Find Full Text PDF

(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E).

Toxicol Ind Health

January 2025

Cincinnati, OH, USA.

(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E) (CASRN 1256353-26-0) is a volatile liquid proposed for use as a new low global-warming potential dielectric fluid in cooling applications. Workplace exposures are expected to be by inhalation exposure. The substance has low acute inhalation toxicity as indicated by a 4-h inhalation LC value of approximately 8000 ppm.

View Article and Find Full Text PDF

Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of L. Leaf Extract.

Int J Mol Sci

December 2024

Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.

L. () is used in Italian folk medicine. This study was performed to determine genotoxic and antigenotoxic effects of leaf extract against mitomycin C (MMC) using an in vitro cytokinesis-block micronucleus assay (CBMN) in the Chinese Hamster Ovarian K1 (CHO-K1) cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!