Despite the broad success of biological nanopores as powerful instruments for the analysis of proteins and nucleic acids at the single-molecule level, a fast simulation methodology to accurately model their nanofluidic properties is currently unavailable. This limits the rational engineering of nanopore traits and makes the unambiguous interpretation of experimental results challenging. Here, we present a continuum approach that can faithfully reproduce the experimentally measured ionic conductance of the biological nanopore Cytolysin A (ClyA) over a wide range of ionic strengths and bias potentials. Our model consists of the extended Poisson-Nernst-Planck and Navier-Stokes (ePNP-NS) equations and a computationally efficient 2D-axisymmetric representation for the geometry and charge distribution of the nanopore. Importantly, the ePNP-NS equations achieve this accuracy by self-consistently considering the finite size of the ions and the influence of both the ionic strength and the nanoscopic scale of the pore on the local properties of the electrolyte. These comprise the mobility and diffusivity of the ions, and the density, viscosity and relative permittivity of the solvent. Crucially, by applying our methodology to ClyA, a biological nanopore used for single-molecule enzymology studies, we could directly quantify several nanofluidic characteristics difficult to determine experimentally. These include the ion selectivity, the ion concentration distributions, the electrostatic potential landscape, the magnitude of the electro-osmotic flow field, and the internal pressure distribution. Hence, this work provides a means to obtain fundamental new insights into the nanofluidic properties of biological nanopores and paves the way towards their rational engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr03114cDOI Listing

Publication Analysis

Top Keywords

biological nanopore
12
biological nanopores
8
nanofluidic properties
8
rational engineering
8
epnp-ns equations
8
biological
5
nanopore
5
accurate modeling
4
modeling biological
4
nanopore extended
4

Similar Publications

Bio-nanopore technology for biomolecules detection.

Adv Biotechnol (Singap)

December 2024

School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China.

Bio-nanopore technology holds great promise in biomacromolecule detection, with its high throughput and low cost positioning it as an ideal detection tool. This technology employs a unique detection mechanism that utilizes nanoscale pores to rapidly and sensitively convert biological molecules interactions into electrical signals, enabling real-time, single-molecule detection with exceptional sensitivity. This review focuses on the latest advancements in this technology across various domains, including DNA and RNA sequencing, protein detection, and small molecule identification.

View Article and Find Full Text PDF

Viroids, small circular non-coding RNAs, act as infectious pathogens in higher plants, demonstrating high stability despite consisting solely of naked RNA. Their dependence of replication on host machinery poses the question of whether RNA modifications play a role in viroid biology. Here, we explore RNA modifications in the avocado sunblotch viroid (ASBVd) and the citrus exocortis viroid (CEVd), representative members of viroids replicating in chloroplasts and the nucleus, respectively, using LC - MS and Oxford Nanopore Technology (ONT) direct RNA sequencing.

View Article and Find Full Text PDF

Nanopore direct RNA sequencing (DRS) enables direct measurement of RNA molecules, including their native RNA modifications, without prior conversion to cDNA. However, commercial methods for molecular barcoding of multiple DRS samples are lacking, and community-driven efforts, such as DeePlexiCon, are not compatible with newer RNA chemistry flowcells and the latest-generation GPU cards. To overcome these limitations, we introduce SeqTagger, a rapid and robust method that can demultiplex direct RNA sequencing datasets with 99% precision and 95% recall.

View Article and Find Full Text PDF

Extracellular volume expansion drives vertebrate axis elongation.

Curr Biol

January 2025

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA. Electronic address:

The vertebrate bauplan is primarily established via the formation of embryonic tissues in a head-to-tail progression. The mechanics of this elongation, which requires the presomitic mesoderm (PSM), remain poorly understood. Here, we find that avian PSM explants can elongate autonomously when physically confined in vitro, producing a pushing force promoting posterior elongation of the embryo.

View Article and Find Full Text PDF

Identification of near full-length human pegivirus type 2 (HPgV-2) genomes in blood donor samples co-infected with hepatitis C virus (HCV).

Microbiol Resour Announc

January 2025

Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.

Human pegivirus (HPgV) identified from an HCV-infected plasma sample through nanopore metagenomics. The analysis revealed a nearly complete HPgV-2 genome. Phylogenetic analysis confirmed its classification within the HPgV-2 genotype, providing insights into viral co-infection dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!