AI Article Synopsis

  • A new amperometric biosensor was created using electropolymerization of L-aspartic acid on a carbon-paste electrode for measuring glucose levels, employing cyclic voltammetry.
  • The modified electrode enhanced glucose oxidase immobilization and improved the biosensor's electrocatalytic performance with a sensitivity of 5.3 µA cmmM and a linear detection range from 0.05 mM to 1.0 mM.
  • Additionally, the biosensor exhibited a low limit of detection at 69.2 µM, a Michaelis-Menten constant of 1.17 mM, and maintained good stability and anti-interference capability against substances like dopamine and uric acid.

Article Abstract

A new amperometric biosensor was fabricated by means of electropolymerization of L-aspartic acid on a carbon-paste electrode (CPE) for the bioelectrochemical determination of glucose. The electropolymerization process was conducted via cyclic voltammetry (CV). The modified CPE with poly (L-aspartic acid) (PAA) provided free carboxyl groups so as to immobilize the glucose oxidase (GOx), and further, enhanced the electrocatalytic activity of the hydrogen peroxide (HO). The biosensor displayed both good stability and good bioactivity. The sensitivity of the prepared biosensor was 5.3 µA cmmM. Its linear range extended from 0.05 mM to 1.0 mM, with the low limit of detection (LOD) being 69.2 µM. The Michaelis-Menten constant was found to be 1.17 mM. Furthermore, the biosensor showed good anti-interference ability in relation to dopamine, uric acid, and ascorbic acid. Taken together, these results demonstrate that PAA/CPE is a promising material for the fabrication of glucose biosensor.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2020.1805758DOI Listing

Publication Analysis

Top Keywords

glucose biosensor
8
poly l-aspartic
8
carbon-paste electrode
8
l-aspartic acid
8
biosensor
6
novel electrochemical
4
glucose
4
electrochemical glucose
4
biosensor based
4
based poly
4

Similar Publications

Facet engineering of CuO for efficient electrochemical glucose sensing.

Anal Chim Acta

January 2025

Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China. Electronic address:

Background: Accurate monitoring glucose level is significant for human health management, especially in the prevention, diagnosis, and management of diabetes. Electrochemical quantification of glucose is a convenient and rapid detection method, and the crucial aspect in achieving great sensing performance lies in the selection and design of the electrode material. Among them, CuO, with highly catalysis ability, is commonly used as electrocatalyst in non-enzymatic glucose sensing.

View Article and Find Full Text PDF

DNAzyme assisted single amplification for FEN1 activity detection using a personal glucose meter.

Anal Chim Acta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China. Electronic address:

Flap endonuclease 1 (FEN1) plays a vital role in cancer by modulating DNA repair mechanisms, inducing genomic instability, and serving as a promising biomarker for cancer diagnosis and prognosis. In this work, we present the development of a novel DNAzyme signal amplification-directed point-of-care sensing system (Dz-PGM) for the sensitive and specific detection of FEN1. The Dz-PGM system utilizes DNAzyme signal amplification in conjunction with a personal glucose meter (PGM) for reporting, capitalizing on a biochemical cascade initiated by FEN1 recognition.

View Article and Find Full Text PDF

Enzymatic reactions play an important role in numerous industrial processes, e.g., in food production, pharmaceuticals and the production of biofuels.

View Article and Find Full Text PDF

Ultrasensitive dual-mode biosensor for photoelectrochemical and differential pulse voltammetry detection of thrombin based on DNA self-assembly.

Biosens Bioelectron

January 2025

Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China. Electronic address:

Abnormal levels of thrombin may be associated with various diseases, such as thrombosis and hemorrhagic diseases, making precise detection of thrombin particularly important. Dual signal detection is a method that enhances detection sensitivity and specificity by simultaneously utilizing two different signals. Its primary advantages include improving detection accuracy and reducing false positive rates, making it particularly suitable for clinical analysis and diagnostics.

View Article and Find Full Text PDF

Metal nanoclusters (NCs), comprising tens to hundreds of metal atoms, are condensed matter with concrete molecular structures and discrete energy levels. Compared to metal atoms and nanoparticles, metal NCs exhibit unique physicochemical properties, especially fascinating electrocatalytic activities. This review focuses on recent progress in the precise synthesis of metal NCs and their applications in electrochemical analysis of various disease biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!