Background: B-cell acute lymphoblastic leukemia (B-ALL) is the most commonly diagnosed childhood malignancy worldwide and is especially common in Mexico. Additionally, the number of cases has increased in recent years. Thus, it is very important to develop molecular strategies to diagnose leukemia. The aim of this study was to investigate MYB expression and to determine its impact on the diagnosis of B-ALL.

Methods: We analyzed the B-ALL gene expression profile by microarray data mining. Bioinformatics analysis was performed to identify the genes that are overexpressed in leukemia. We determined that MYB was highly expressed in leukemia. Then, we validated MYB expression in 70 patients with B-ALL and in 16 healthy controls (HCs) using qRT-PCR. The results were statistically analyzed using the Kolmogorov-Smirnov Z test, Mann-Whitney U test, receiver operating characteristic curves, and the Youden index.

Results: The microarrays showed that MYB was overexpressed in B-ALL patients with a fold change of 57.8728 and a P value of 2.56 . MYB expression showed great variability among the patients analyzed. However, compared to the HCs, the B-ALL patients had a P value < .0001, an area under the curve of 0.813, and a Youden index of 1.46, indicating the statistical significance.

Conclusion: MYB expression in B-ALL cells could be a potential molecular marker for childhood leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ajco.13406DOI Listing

Publication Analysis

Top Keywords

myb expression
12
b-cell acute
8
acute lymphoblastic
8
lymphoblastic leukemia
8
b-all patients
8
expression
5
leukemia
5
b-all
5
myb
5
v-myb avian
4

Similar Publications

Molecular and Metabolic Regulation of Flavonoid Biosynthesis in Two Varieties of .

Curr Issues Mol Biol

December 2024

College of Landscape Architecture and Horticulture, Yunnan Agricultural University, Kunming 650201, China.

is an important medicinal plant, rich in flavonoid, with various pharmacological activities such as stomachic and antioxidant properties. In this study, we integrated metabolome and transcriptome analyses to reveal metabolite and gene expression profiles of both green (GDd) and purple-red (RDd) of semi-annual and annual stems. A total of 244 flavonoid metabolites, mainly flavones and flavonols, were identified and annotated.

View Article and Find Full Text PDF

A novel transcription factor OsMYB73 affects grain size and chalkiness by regulating endosperm storage substances' accumulation-mediated auxin biosynthesis signalling pathway in rice.

Plant Biotechnol J

December 2024

State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China-IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.

Enhanced grain yield and quality traits are everlasting breeding goals. It is therefore of great significance to uncover more genetic resources associated with these two important agronomic traits. Plant MYB family transcription factors play important regulatory roles in diverse biological processes.

View Article and Find Full Text PDF

GsMYB10 encoding a MYB-CC transcription factor enhances the tolerance to acidic aluminum stress in soybean.

BMC Plant Biol

December 2024

Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily.

View Article and Find Full Text PDF

OsMYB1 antagonizes OsSPL14 to mediate rice resistance to brown planthopper and Xanthomonas oryzae pv. oryzae.

Plant Cell Rep

December 2024

CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.

OsMYB1 negatively mediates rice resistance to brown planthopper and rice blight. Additionally, OsMYB1 interacts with OsSPL14 and antagonizes its function by oppositely regulating downstream resistance-related genes. In their natural habitats, plants are concurrently attacked by different biotic factors.

View Article and Find Full Text PDF

Natural variation in an HD-ZIP factor identifies its role in controlling apple leaf cuticular wax deposition.

Dev Cell

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China. Electronic address:

Natural variation is an invaluable genetic resource for plant trait improvement. Here, we performed a genome-wide association study (GWAS) analysis and identified MdHDG5, which controls apple leaf cuticular wax. An A-to-G single-nucleotide polymorphism (SNP) on the HDG5 promoter is associated with HDG5 expression and hexacosanol content (a component of leaf cuticular wax).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!