The potential nutrient stoichiometry changes caused by trout cage aquaculture is concerned especially in oligotrophic waters. Long-term total nitrogen (N), total phosphorus (P) and N:P ratio changes in 6 cascade reservoirs with rainbow trout cage aquaculture in the oligotrophic upstream Yellow River (UYR) were studied from 2013 to 2017 in this paper. The 5-year monitoring results showed that N, P and N:P ratio levels showed no obvious long-term changes in high-altitude oligotrophic waters with rainbow trout cage aquaculture. No obvious longitudinal N, P and N:P ratio level changes were observed in the 6 cascade reservoirs from upstream Longyangxia Reservoir (LYR) to downstream Jishixia Reservoir (JSR). The increased N and P resulting from the cage aquaculture accounted only for 1.74% and 5.2% of the natural N and P levels, respectively, with a fish production of 10,000 tonnes. The upstream Yellow River remained oligotrophic and phosphorus-limited. Results in this study proved that trout cage aquaculture do not necessarily cause nitrogen, phosphorus and N:P ratio changes even in oligotrophic waters. Phosphorus should be considered first when identifying priority nitrogen and phosphorus sources and the corresponding control measures in waters with high N:P ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417551PMC
http://dx.doi.org/10.1038/s41598-020-68866-7DOI Listing

Publication Analysis

Top Keywords

cage aquaculture
24
trout cage
20
cascade reservoirs
12
oligotrophic waters
12
nutrient stoichiometry
8
stoichiometry changes
8
changes oligotrophic
8
phosphorus ratio
8
ratio changes
8
rainbow trout
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!