With a great diversity in gene composition, including multiple putative antibiotic resistance genes, AbaR islands are potential contributors to multidrug resistance in However, the effective contribution of AbaR to antibiotic resistance and bacterial physiology remains elusive. To address this, we sought to accurately remove AbaR islands and restore the integrity of their insertion site. To this end, we devised a versatile scarless genome editing strategy. We performed this genetic modification in two recent clinical strains: the strain AB5075 and the nosocomial strain AYE, which carry AbaR11 and AbaR1 islands of 19.7 kbp and 86.2 kbp, respectively. Antibiotic susceptibilities were then compared between the parental strains and their AbaR-cured derivatives. As anticipated by the predicted function of the open reading frame (ORF) of this island, the antibiotic resistance profiles were identical between the wild type and the AbaR11-cured AB5075 strains. In contrast, AbaR1 carries 25 ORFs, with predicted resistance to several classes of antibiotics, and the AYE AbaR1-cured derivative showed restored susceptibility to multiple classes of antibiotics. Moreover, curing of AbaRs restored high levels of natural transformability. Indeed, most AbaR islands are inserted into the gene involved in natural transformation. Our data indicate that AbaR insertion effectively inactivates and that the restored is functional. Curing of AbaR consistently resulted in highly transformable and therefore easily genetically tractable strains. Emendation of AbaR provides insight into the functional consequences of AbaR acquisition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508600PMC
http://dx.doi.org/10.1128/AAC.00951-20DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
12
abar islands
12
abar
9
abar antibiotic
8
natural transformability
8
classes antibiotics
8
resistance
6
antibiotic
5
scarless removal
4
removal large
4

Similar Publications

The influx of whole genome sequencing (WGS) data in the public health and clinical diagnostic sectors has created a need for data analysis methods and bioinformatics expertise, which can be a bottleneck for many laboratories. At Sciensano, the Belgian national public health institute, an intuitive and user-friendly bioinformatics tool portal was implemented using Galaxy, an open-source platform for data analysis and workflow creation. The Galaxy @Sciensano instance is available to both internal and external scientists and offers a wide range of tools provided by the community, complemented by over 50 custom tools and pipelines developed in-house.

View Article and Find Full Text PDF

Chronic infections represent a significant global health and economic challenge. Biofilms, which are bacterial communities encased in an extracellular polysaccharide matrix, contribute to approximately 80% of these infections. In particular, pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated from the sputum of patients with cystic fibrosis and are commonly found in chronic wound infections.

View Article and Find Full Text PDF

Precision fermentation in the realm of microbial protein production: State-of-the-art and future insights.

Food Res Int

January 2025

Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil. Electronic address:

Food security issues are becoming more pressing due to the world's rapid population expansion and climate change, which also drive up demand for nutrient-dense commodities like meat and cereals. Conventional agricultural practices, which depend on pesticides, fertilizers, and antibiotics, are exacerbating environmental problems, such as antibiotic resistance. Precision fermentation has become a game-changing technique that uses microorganisms to create high-value food ingredients more efficiently and with less negative environmental impact.

View Article and Find Full Text PDF

Relationship of Biofilm Formation with Antibiotic Resistance, Virulence Determinants and Genetic Diversity in Clinically Isolated Acinetobacter baumannii Strains in Karachi, Pakistan.

Microb Pathog

January 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. Electronic address:

Multi-drug resistant (MDR) Acinetobacter baumannii causes nosocomial infections due to a plethora of virulence determinants like biofilm formation which are pivotal to its survival and pathogenicity. Hence, investigation of these mechanisms in currently circulating strains is required for effective infection control and drug development. This study investigates the prevalence of antibiotic resistance and virulence factors and their relationship with biofilm formation in Acinetobacter baumannii strains in Karachi, Pakistan.

View Article and Find Full Text PDF

Antibiotics are extensively used in layer flocks for the prevention of diseases and to enhance their growth and production. However, their non-prudent use is leading to the occurrence of residues in eggs. The present study aimed at the detection of tetracycline group residues in egg samples collected from layer farms located in Haryana, India, and human health risk assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!