Connecting land use-land cover and precipitation with organic matter biogeochemistry in a tropical river-estuary system of western peninsular India.

J Environ Manage

State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, 200062, Shanghai, PR China.

Published: October 2020

Organic matter (OM) composition changed due to land use ─ land cover (LULC) and hydrology modification, has distinctive linkage towards sustainable environment management in tropical river systems. It is crucial in small river systems, which experience delay of freshwater flow to the estuaries due to headwater damming, also LULC alteration along the entire basin. In order to understand this fundamental linkage in tropical Zuari river-estuary (ZRE), we analyzed multi-proxy data of organic carbon to total nitrogen ratio (C/N), stable organic carbon isotope (δC) and lignin phenols measured in seasonally collected suspended particulate matter (SPM) and sediment samples. Results highlighted about moderate seasonality of OM tracers, with a significant effect of LULC alteration, which nevertheless a striking feature in monsoon-fed river-estuaries of peninsular India. Particulate C export from ZRE estimated to be 20 × 10 kg yr, was much lower as compared to tropical river-estuary systems elsewhere. OM fraction from vascular plant (mangroves) contributed to SPM and sediment was 15% and 40%, respectively, calculated using a Bayesian mixing calculation through Stable isotope analysis in R (SIAR). Presence of mudflat LULC in the estuarine region notably caused 20% decrease in C and 60% increase in lignin phenol (Λ8) as compared to their limits in upstream. This is although mudflat accounts only 3% of ZRE catchment. The degree of shifts in OM tracers highlights towards efficient entrapment, transformation and/or utilization of riverine OM in the mudflats of ZRE. Accelerated human induced LULC dampens the seasonality of OM characteristics and flow is highlighted through this study, which is essential towards sustainable environmental management practice in small rivers of India and World.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110993DOI Listing

Publication Analysis

Top Keywords

organic matter
8
tropical river-estuary
8
peninsular india
8
river systems
8
lulc alteration
8
organic carbon
8
spm sediment
8
lulc
5
connecting land
4
land use-land
4

Similar Publications

The effects of PM components on the cardiovascular disease admissions in Shanghai City, China: a multi- region study.

BMC Public Health

December 2024

Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.

Background: The burden of cardiovascular disease (CVD) is severe worldwide. Although many studies have investigated the association of particulate pollution with CVD, the effect of finer particulate pollution components on CVD remains unclear. This study aimed to explore the effect of five PM components ([Formula: see text], sulfate; [Formula: see text], nitrate; [Formula: see text], ammonium; OM, organic matter; BC, carbon black) on CVD admission in Shanghai City, identify the susceptible population, and provide clues for the prevention and control of particulate pollution.

View Article and Find Full Text PDF

Unraveling the drivers of optimal stomatal behavior in global C plants: A carbon isotope perspective.

Sci Total Environ

December 2024

College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:

Understanding the drivers of stomatal behavior is critical for modeling terrestrial carbon cycle and water balance. The unified stomatal optimization (USO) model provides a mechanistic linkage between stomatal conductance (g) and photosynthesis (A), with its slope parameter (g) inversely related to intrinsic water use efficiency (iWUE), providing a key proxy to characterize the differences in iWUE and stomatal behavior. While many studies have identified multiple environmental factors influencing g, the potential role of evolutionary history in shaping g remains incompletely understood.

View Article and Find Full Text PDF

Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter.

Sci Total Environ

December 2024

Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China. Electronic address:

Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system.

View Article and Find Full Text PDF

Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).

View Article and Find Full Text PDF

Fenton reaction technology has worked well in water and wastewater treatment; however it is often limited by such problems as continuous external supply of HO, slow Fe/Fe cycle rate, high energy requirements, and maintenance of low pH during operation. Herein, a novel self-sufficient heterogeneous Fenton system based on Fe/MoS was designed, fabricated, and optimized to effectively address these problems. The combined presence of Fe and sulfur vacancies sites in MoS played a pivotal role in the generation of HOvia two-step single-electron reduction process without any energy consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!