In this work, silver nanoparticles have been synthesized with an average particle size of 35 nm, within 90s, using microwave and Sapindus mukorossi extract as a stabilizing agent. The AgNps were surface immobilized on eggshells (ES) to obtain Ag@ES, which was characterized by UV-Vis, UV-DRS, FT-IR, ICP-OES, TGA-DSC, SEM-EDX, XRD and XPS. Its applicability as an environmental catalyst was evaluated by Cr (VI) adsorption, photocatalytic degradation of methyl orange, eriochrome black-T, methylene blue, rhodamine-B as model dyes and microbial inhibition against Staphylococcus aureus, Escherichia coli and Candida albicans. The results revealed that Ag@ES exhibited maximum adsorption capacity of 93 mg/g for Cr (VI) ion and degradation efficiency of ~90-98% for removing anionic and cationic dyes. Further, it showed a minimum inhibitory concentration of 15.6, 7.8 and 31.2 μg/mL for S. aureus, E. coli and C. albicans respectively. Moreover, the Ag@ES being a heterogeneous catalyst can be regenerated and reused without significant loss in its efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110962DOI Listing

Publication Analysis

Top Keywords

heterogeneous catalyst
8
dyes microbial
8
facile synthesis
4
synthesis silver@eggshell
4
silver@eggshell nanocomposite
4
nanocomposite heterogeneous
4
catalyst removal
4
removal heavy
4
heavy metal
4
metal ions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!