In this work, silver nanoparticles have been synthesized with an average particle size of 35 nm, within 90s, using microwave and Sapindus mukorossi extract as a stabilizing agent. The AgNps were surface immobilized on eggshells (ES) to obtain Ag@ES, which was characterized by UV-Vis, UV-DRS, FT-IR, ICP-OES, TGA-DSC, SEM-EDX, XRD and XPS. Its applicability as an environmental catalyst was evaluated by Cr (VI) adsorption, photocatalytic degradation of methyl orange, eriochrome black-T, methylene blue, rhodamine-B as model dyes and microbial inhibition against Staphylococcus aureus, Escherichia coli and Candida albicans. The results revealed that Ag@ES exhibited maximum adsorption capacity of 93 mg/g for Cr (VI) ion and degradation efficiency of ~90-98% for removing anionic and cationic dyes. Further, it showed a minimum inhibitory concentration of 15.6, 7.8 and 31.2 μg/mL for S. aureus, E. coli and C. albicans respectively. Moreover, the Ag@ES being a heterogeneous catalyst can be regenerated and reused without significant loss in its efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.110962 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!