Background: Globally, the recent outbreak of Zika virus (ZIKV) in Brazil, Asia Pacific, and other countries highlighted the unmet medical needs. Currently, there are neither effective vaccines nor therapeutics available to prevent or treat ZIKV infection.
Objective: In this study, we aimed to design an epitope-based vaccine for ZIKV using an in silico approach to predict and analyze B- and T-cell epitopes.
Methods: The prediction of the most antigenic epitopes has targeted the capsid and envelope proteins as well as non-structural proteins NS5 and NS3 using immune-informatics tools PROTPARAM, CFSSP, PSIPRED, and Vaxijen v2.0. B and T-cell epitopes were predicted using ABCpred, IEDB, TepiTool, and their toxicity was evaluated using ToxinPred. The 3-dimensional epitope structures were generated by PEP-FOLD. Energy minimization was performed using Swiss- Pdb Viewer, and molecular docking was conducted using PatchDock and FireDock server.
Results: As a result, we predicted 307 epitopes of MHCI (major histocompatibility complex class I) and 102 epitopes of MHCII (major histocompatibility complex class II). Based on immunogenicity and antigenicity scores, we identified the four most antigenic MHC I epitopes: MVLAILAFLR (HLA-A*68:01), ETLHGTVTV (HLA-A*68:02), DENHPYRTW (HLA-B*44:02), QEGVFH TMW (HLA-B*44:03) and TASGRVIEEW (HLA-B*58:01), and MHC II epitopes: IIKKFKKDLAAMLRI (HLA-DRB3*02:02), ENSKMMLELDPPFGD (HLA-DRB3*01:01), HAET WFFDENHPYRT (HLA-DRB3*01:01), TDGVYRVMTRRLLGS (HLA-DRB1*11:01), and DGCW YGMEIRPRKEP (HLA-DRB5*01:01).
Conclusion: This study provides novel potential B cell and T cell epitopes to fight against Zika virus infections and may prompt further development of vaccines against ZIKV and other emerging infectious diseases. However, further investigations for protective immune response by in vitro and in vivo studies to ratify immunogenicity, the safety of the predicted structure, and ultimately for the vaccine properties to prevent ZIKV infections are warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871526520666200810153657 | DOI Listing |
Rev Med Virol
January 2025
Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China.
Arboviruses currently are regarded as a major worldwide public health concern. The clinical outcomes associated with this group of viruses may vary from asymptomatic infections to severe forms of haemorrhagic fever characterised by bleeding disorders. Similar to other systemic viral infections, arboviruses can either directly or indirectly affect different parts of the body, such as the urogenital system.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA.
Orthoflaviviruses are positive-sense single-stranded RNA viruses that hijack host proteins to promote their own replication. Zika virus (ZIKV) is infamous among orthoflaviviruses for its association with severe congenital birth defects, notably microcephaly. We previously mapped ZIKV-host protein interactions and identified the interaction between ZIKV non-structural protein 4A (NS4A) and host microcephaly protein ankyrin repeat and LEM domain-containing 2 (ANKLE2).
View Article and Find Full Text PDFUnlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.
View Article and Find Full Text PDFIntroduction: The severity of virally induced prenatal brain injury, even among dizygotic twins, varies according to individual and maternal risk and protective factors, including genomics.
Objective: This scoping review aims to analyze data on genetic susceptibility to neurological outcomes in children exposed in utero to Zika virus.
Methods: We followed JBI methodology for this scoping review.
BMC Infect Dis
January 2025
Faculty of Medicine, Center for Zoonotic and Emerging Diseases HUMRC, Universitas Hasanuddin, Makassar, Indonesia.
Background: The burden of Aedes aegypti-transmitted viruses such as dengue, chikungunya, and Zika are increasing globally, fueled by urbanization and climate change, with some of the highest current rates of transmission in Asia. Local factors in the built environment have the potential to exacerbate or mitigate transmission.
Methods: In 24 informal urban settlements in Makassar, Indonesia and Suva, Fiji, we tested children under 5 years old for evidence of prior infection with dengue, chikungunya, and Zika viruses by IgG serology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!