De novo assembly of sequence reads from next generation sequencing platforms is a common strategy for detecting presence and sequencing of viruses in biospecimens. Amplification artifacts and presence of several related viruses in the same specimen can lead to assembly of erroneous, chimeric sequences. We now report that such chimeras can also occur between viral and non-viral biological sequences incorrectly joined together which may cause erroneous detection of viruses, highlighting the importance of performing a chimera checking step in bioinformatics pipelines. Using Illumina NextSeq and metagenomic sequencing, we analyzed 80 consecutive non-melanoma skin cancers (NMSCs) from 11 immunosuppressed patients together with 11 NMSCs from patients who had only developed 1 NMSC. We aligned high-quality reads against a Human Papillomavirus (HPV) database and found HPV sequences in 9/91 specimens. A previous bioinformatic analysis of the same crude sequencing data from some of these samples had found an additional 3 specimens to be HPV-positive after performing de novo assembly. The reason for the discrepancy was investigated and found to be mostly caused by chimeric sequences containing both viral and non-viral sequences. Non-viral sequences were present in these 3 samples. To avoid erroneous detection of HPV when performing sequencing, we thus developed a novel script to identify HPV chimeric sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417191 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237455 | PLOS |
ACS Nano
December 2024
The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
State Scientific Center of Virology and Biotechnology "Vector", Rospotrebnadzor, 630559 Koltsovo, Novosibirsk Region, Russia.
Antibodies are complex protein structures, and producing them using eukaryotic expression systems presents significant challenges. One frequently overlooked aspect of expression vectors is the nucleotide sequence encoding the signal peptide, which plays a pivotal role in facilitating the secretion of recombinant proteins. This study presents the development of an integrative vector, pVEAL3, for expressing full-length recombinant monoclonal antibodies in mammalian cells.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
December 2024
State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China. Electronic address:
Toll-like receptor 5 (TLR5) plays a crucial role in the immune response through recognizing bacterial flagellin. Some teleosts possess two forms of TLR5, including a canonical membrane TLR5 (TLR5M) ortholog and a piscine soluble TLR5 (TLR5S). In this report, the full-length cDNA sequences of Larimichthys crocea TLR5M (LcTLR5M) and TLR5S (LcTLR5S) were identified.
View Article and Find Full Text PDFVaccine
December 2024
Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico. Electronic address:
The development of a protective HIV vaccine remains a challenge given the high antigenic diversity and mutational rate of the virus, which leads to viral escape and establishment of reservoirs in the host. Modern antigen design can guide immune responses towards conserved sites, consensus sequences or normally subdominant epitopes, thus enabling the development of broadly neutralizing antibodies and polyfunctional lymphocyte responses. Conventional epitope vaccines can often be impaired by low immunogenicity, a limitation that may be overcome by using a carrier system.
View Article and Find Full Text PDFExtracell Vesicle
December 2024
Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK.
Extracellular vesicles (EVs) are promising therapeutic delivery vehicles, although their potential is limited by a lack of efficient engineering strategies to enhance loading and functional cargo delivery. Using an in-house bioinformatics analysis, we identified N-glycosylation as a putative EV-sorting feature. PTTG1IP (a small, N-glycosylated, single-spanning transmembrane protein) was found to be a suitable scaffold for EV loading of therapeutic cargoes, with loading dependent on its N-glycosylation at two arginine residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!