A novel adsorbent derived from grapefruit peel (GP) based biochar (GPBC) was synthesized by combined carbonization of GP and subsequent activation by GP extracts. Compared to biochar without extracts activation, the technique granted GPBC-20 (with 1:20 of solid-solution ratio) more abundant surface functional groups, which exerts the adsorbent superior performance for tetracycline (TC) adsorption (37.92 mg/g v.s. 16.64 mg/g). The adsorption kinetics, isotherms and thermodynamics models were further used to evaluate the adsorption behavior of GPBC. The enhanced adsorption was analyzed by characterization of fresh and used GPBC, revealing that the adsorption mechanism was comprised of pore filling, charge interaction and chemical bonding. The comprehensive investigation of using agricultural waste extracts as activator to prepare its raw materials-based adsorbents may be of great significance for enhanced resource utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.123971DOI Listing

Publication Analysis

Top Keywords

performance tetracycline
8
adsorption
5
activation grapefruit
4
grapefruit derived
4
derived biochar
4
biochar peel
4
extracts
4
peel extracts
4
extracts performance
4
tetracycline removal
4

Similar Publications

Background: Streptococcus suis (S. suis) is a major swine pathogen and a significant zoonotic agent, causing substantial economic losses in the swine sector and having considerable public health importance. The control and management of S.

View Article and Find Full Text PDF

Antibiotics are extensively used in layer flocks for the prevention of diseases and to enhance their growth and production. However, their non-prudent use is leading to the occurrence of residues in eggs. The present study aimed at the detection of tetracycline group residues in egg samples collected from layer farms located in Haryana, India, and human health risk assessment.

View Article and Find Full Text PDF

Characteristic alterations in the urinary microbiome, or urobiome, are associated with renal transplant pathology. To date, there has been no direct study of the urobiome during acute allograft rejection. The goal of this study was to determine if unique urobiome alterations are present during acute rejection in renal transplant recipients.

View Article and Find Full Text PDF

Background: Otitis media is among the leading causes of illnesses responsible for causing hearing problems and adding significant costs to the public health system. Bacteria are the most common causative agents for otitis media. Currently, there is little information on the prevalence and antimicrobial susceptibility patterns of pathogenic bacterial isolates from patients with otitis media in Ethiopia.

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!